| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1mhlfehlf | GIF version | ||
| Description: Prove that 1 - 1/2 = 1/2. (Contributed by David A. Wheeler, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| 1mhlfehlf | ⊢ (1 − (1 / 2)) = (1 / 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9106 | . . 3 ⊢ 2 ∈ ℂ | |
| 2 | ax-1cn 8017 | . . 3 ⊢ 1 ∈ ℂ | |
| 3 | 2ap0 9128 | . . . 4 ⊢ 2 # 0 | |
| 4 | 1, 3 | pm3.2i 272 | . . 3 ⊢ (2 ∈ ℂ ∧ 2 # 0) |
| 5 | divsubdirap 8780 | . . 3 ⊢ ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((2 − 1) / 2) = ((2 / 2) − (1 / 2))) | |
| 6 | 1, 2, 4, 5 | mp3an 1349 | . 2 ⊢ ((2 − 1) / 2) = ((2 / 2) − (1 / 2)) |
| 7 | 2m1e1 9153 | . . 3 ⊢ (2 − 1) = 1 | |
| 8 | 7 | oveq1i 5953 | . 2 ⊢ ((2 − 1) / 2) = (1 / 2) |
| 9 | 2div2e1 9168 | . . 3 ⊢ (2 / 2) = 1 | |
| 10 | 9 | oveq1i 5953 | . 2 ⊢ ((2 / 2) − (1 / 2)) = (1 − (1 / 2)) |
| 11 | 6, 8, 10 | 3eqtr3ri 2234 | 1 ⊢ (1 − (1 / 2)) = (1 / 2) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 (class class class)co 5943 ℂcc 7922 0cc0 7924 1c1 7925 − cmin 8242 # cap 8653 / cdiv 8744 2c2 9086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-2 9094 |
| This theorem is referenced by: geo2sum 11796 geoihalfsum 11804 cos12dec 12050 cvgcmp2nlemabs 15933 trilpolemisumle 15939 |
| Copyright terms: Public domain | W3C validator |