| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1mhlfehlf | GIF version | ||
| Description: Prove that 1 - 1/2 = 1/2. (Contributed by David A. Wheeler, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| 1mhlfehlf | ⊢ (1 − (1 / 2)) = (1 / 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9142 | . . 3 ⊢ 2 ∈ ℂ | |
| 2 | ax-1cn 8053 | . . 3 ⊢ 1 ∈ ℂ | |
| 3 | 2ap0 9164 | . . . 4 ⊢ 2 # 0 | |
| 4 | 1, 3 | pm3.2i 272 | . . 3 ⊢ (2 ∈ ℂ ∧ 2 # 0) |
| 5 | divsubdirap 8816 | . . 3 ⊢ ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((2 − 1) / 2) = ((2 / 2) − (1 / 2))) | |
| 6 | 1, 2, 4, 5 | mp3an 1350 | . 2 ⊢ ((2 − 1) / 2) = ((2 / 2) − (1 / 2)) |
| 7 | 2m1e1 9189 | . . 3 ⊢ (2 − 1) = 1 | |
| 8 | 7 | oveq1i 5977 | . 2 ⊢ ((2 − 1) / 2) = (1 / 2) |
| 9 | 2div2e1 9204 | . . 3 ⊢ (2 / 2) = 1 | |
| 10 | 9 | oveq1i 5977 | . 2 ⊢ ((2 / 2) − (1 / 2)) = (1 − (1 / 2)) |
| 11 | 6, 8, 10 | 3eqtr3ri 2237 | 1 ⊢ (1 − (1 / 2)) = (1 / 2) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2178 class class class wbr 4059 (class class class)co 5967 ℂcc 7958 0cc0 7960 1c1 7961 − cmin 8278 # cap 8689 / cdiv 8780 2c2 9122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-2 9130 |
| This theorem is referenced by: geo2sum 11940 geoihalfsum 11948 cos12dec 12194 cvgcmp2nlemabs 16173 trilpolemisumle 16179 |
| Copyright terms: Public domain | W3C validator |