![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3ex | GIF version |
Description: 3 is a set (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
3ex | ⊢ 3 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cn 8996 | . 2 ⊢ 3 ∈ ℂ | |
2 | 1 | elexi 2751 | 1 ⊢ 3 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 Vcvv 2739 ℂcc 7811 3c3 8973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-v 2741 df-in 3137 df-ss 3144 df-2 8980 df-3 8981 |
This theorem is referenced by: fztpval 10085 lgsdir2lem3 14516 |
Copyright terms: Public domain | W3C validator |