| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-resscn | GIF version | ||
| Description: The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, justified by Theorem axresscn 7955. (Contributed by NM, 1-Mar-1995.) |
| Ref | Expression |
|---|---|
| ax-resscn | ⊢ ℝ ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cr 7906 | . 2 class ℝ | |
| 2 | cc 7905 | . 2 class ℂ | |
| 3 | 1, 2 | wss 3165 | 1 wff ℝ ⊆ ℂ |
| Colors of variables: wff set class |
| This axiom is referenced by: recn 8040 reex 8041 recni 8066 rerecapb 8898 nnsscn 9023 nn0sscn 9282 qsscn 9734 reexpcl 10682 rpexpcl 10684 reexpclzap 10685 expge0 10701 expge1 10702 abscn2 11545 recn2 11547 imcn2 11548 climabs 11550 climre 11552 climim 11553 climcvg1nlem 11579 fsumrecl 11631 fsumrpcl 11634 fsumge0 11689 fsumre 11702 fsumim 11703 fprodrecl 11838 fprodrpcl 11841 fprodreclf 11844 fprodge0 11867 fprodge1 11869 reeff1 11930 remet 14938 tgioo2cntop 14947 tgioo2 14949 abscncf 14975 recncf 14976 imcncf 14977 cnrehmeocntop 15000 maxcncf 15005 mincncf 15006 ivthreinc 15035 hovercncf 15036 limcimolemlt 15054 recnprss 15077 dvidrelem 15082 dvidre 15087 dvcjbr 15098 dvfre 15100 reeff1olem 15161 cosz12 15170 ioocosf1o 15244 |
| Copyright terms: Public domain | W3C validator |