Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-resscn | GIF version |
Description: The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, justified by Theorem axresscn 7801. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
ax-resscn | ⊢ ℝ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cr 7752 | . 2 class ℝ | |
2 | cc 7751 | . 2 class ℂ | |
3 | 1, 2 | wss 3116 | 1 wff ℝ ⊆ ℂ |
Colors of variables: wff set class |
This axiom is referenced by: recn 7886 reex 7887 recni 7911 nnsscn 8862 nn0sscn 9119 qsscn 9569 reexpcl 10472 rpexpcl 10474 reexpclzap 10475 expge0 10491 expge1 10492 abscn2 11256 recn2 11258 imcn2 11259 climabs 11261 climre 11263 climim 11264 climcvg1nlem 11290 fsumrecl 11342 fsumrpcl 11345 fsumge0 11400 fsumre 11413 fsumim 11414 fprodrecl 11549 fprodrpcl 11552 fprodreclf 11555 fprodge0 11578 fprodge1 11580 reeff1 11641 remet 13180 tgioo2cntop 13189 abscncf 13212 recncf 13213 imcncf 13214 cnrehmeocntop 13233 limcimolemlt 13273 recnprss 13296 dvcjbr 13312 dvfre 13314 reeff1olem 13332 cosz12 13341 ioocosf1o 13415 |
Copyright terms: Public domain | W3C validator |