| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-resscn | GIF version | ||
| Description: The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, justified by Theorem axresscn 7993. (Contributed by NM, 1-Mar-1995.) |
| Ref | Expression |
|---|---|
| ax-resscn | ⊢ ℝ ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cr 7944 | . 2 class ℝ | |
| 2 | cc 7943 | . 2 class ℂ | |
| 3 | 1, 2 | wss 3170 | 1 wff ℝ ⊆ ℂ |
| Colors of variables: wff set class |
| This axiom is referenced by: recn 8078 reex 8079 recni 8104 rerecapb 8936 nnsscn 9061 nn0sscn 9320 qsscn 9772 reexpcl 10723 rpexpcl 10725 reexpclzap 10726 expge0 10742 expge1 10743 abscn2 11701 recn2 11703 imcn2 11704 climabs 11706 climre 11708 climim 11709 climcvg1nlem 11735 fsumrecl 11787 fsumrpcl 11790 fsumge0 11845 fsumre 11858 fsumim 11859 fprodrecl 11994 fprodrpcl 11997 fprodreclf 12000 fprodge0 12023 fprodge1 12025 reeff1 12086 remet 15095 tgioo2cntop 15104 tgioo2 15106 abscncf 15132 recncf 15133 imcncf 15134 cnrehmeocntop 15157 maxcncf 15162 mincncf 15163 ivthreinc 15192 hovercncf 15193 limcimolemlt 15211 recnprss 15234 dvidrelem 15239 dvidre 15244 dvcjbr 15255 dvfre 15257 reeff1olem 15318 cosz12 15327 ioocosf1o 15401 |
| Copyright terms: Public domain | W3C validator |