Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-resscn | GIF version |
Description: The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, justified by Theorem axresscn 7834. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
ax-resscn | ⊢ ℝ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cr 7785 | . 2 class ℝ | |
2 | cc 7784 | . 2 class ℂ | |
3 | 1, 2 | wss 3127 | 1 wff ℝ ⊆ ℂ |
Colors of variables: wff set class |
This axiom is referenced by: recn 7919 reex 7920 recni 7944 rerecapb 8773 nnsscn 8897 nn0sscn 9154 qsscn 9604 reexpcl 10507 rpexpcl 10509 reexpclzap 10510 expge0 10526 expge1 10527 abscn2 11291 recn2 11293 imcn2 11294 climabs 11296 climre 11298 climim 11299 climcvg1nlem 11325 fsumrecl 11377 fsumrpcl 11380 fsumge0 11435 fsumre 11448 fsumim 11449 fprodrecl 11584 fprodrpcl 11587 fprodreclf 11590 fprodge0 11613 fprodge1 11615 reeff1 11676 remet 13611 tgioo2cntop 13620 abscncf 13643 recncf 13644 imcncf 13645 cnrehmeocntop 13664 limcimolemlt 13704 recnprss 13727 dvcjbr 13743 dvfre 13745 reeff1olem 13763 cosz12 13772 ioocosf1o 13846 |
Copyright terms: Public domain | W3C validator |