| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-resscn | GIF version | ||
| Description: The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, justified by Theorem axresscn 7946. (Contributed by NM, 1-Mar-1995.) |
| Ref | Expression |
|---|---|
| ax-resscn | ⊢ ℝ ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cr 7897 | . 2 class ℝ | |
| 2 | cc 7896 | . 2 class ℂ | |
| 3 | 1, 2 | wss 3157 | 1 wff ℝ ⊆ ℂ |
| Colors of variables: wff set class |
| This axiom is referenced by: recn 8031 reex 8032 recni 8057 rerecapb 8889 nnsscn 9014 nn0sscn 9273 qsscn 9724 reexpcl 10667 rpexpcl 10669 reexpclzap 10670 expge0 10686 expge1 10687 abscn2 11499 recn2 11501 imcn2 11502 climabs 11504 climre 11506 climim 11507 climcvg1nlem 11533 fsumrecl 11585 fsumrpcl 11588 fsumge0 11643 fsumre 11656 fsumim 11657 fprodrecl 11792 fprodrpcl 11795 fprodreclf 11798 fprodge0 11821 fprodge1 11823 reeff1 11884 remet 14892 tgioo2cntop 14901 tgioo2 14903 abscncf 14929 recncf 14930 imcncf 14931 cnrehmeocntop 14954 maxcncf 14959 mincncf 14960 ivthreinc 14989 hovercncf 14990 limcimolemlt 15008 recnprss 15031 dvidrelem 15036 dvidre 15041 dvcjbr 15052 dvfre 15054 reeff1olem 15115 cosz12 15124 ioocosf1o 15198 |
| Copyright terms: Public domain | W3C validator |