| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-resscn | GIF version | ||
| Description: The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, justified by Theorem axresscn 7944. (Contributed by NM, 1-Mar-1995.) |
| Ref | Expression |
|---|---|
| ax-resscn | ⊢ ℝ ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cr 7895 | . 2 class ℝ | |
| 2 | cc 7894 | . 2 class ℂ | |
| 3 | 1, 2 | wss 3157 | 1 wff ℝ ⊆ ℂ |
| Colors of variables: wff set class |
| This axiom is referenced by: recn 8029 reex 8030 recni 8055 rerecapb 8887 nnsscn 9012 nn0sscn 9271 qsscn 9722 reexpcl 10665 rpexpcl 10667 reexpclzap 10668 expge0 10684 expge1 10685 abscn2 11497 recn2 11499 imcn2 11500 climabs 11502 climre 11504 climim 11505 climcvg1nlem 11531 fsumrecl 11583 fsumrpcl 11586 fsumge0 11641 fsumre 11654 fsumim 11655 fprodrecl 11790 fprodrpcl 11793 fprodreclf 11796 fprodge0 11819 fprodge1 11821 reeff1 11882 remet 14868 tgioo2cntop 14877 tgioo2 14879 abscncf 14905 recncf 14906 imcncf 14907 cnrehmeocntop 14930 maxcncf 14935 mincncf 14936 ivthreinc 14965 hovercncf 14966 limcimolemlt 14984 recnprss 15007 dvidrelem 15012 dvidre 15017 dvcjbr 15028 dvfre 15030 reeff1olem 15091 cosz12 15100 ioocosf1o 15174 |
| Copyright terms: Public domain | W3C validator |