| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-resscn | GIF version | ||
| Description: The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, justified by Theorem axresscn 8043. (Contributed by NM, 1-Mar-1995.) |
| Ref | Expression |
|---|---|
| ax-resscn | ⊢ ℝ ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cr 7994 | . 2 class ℝ | |
| 2 | cc 7993 | . 2 class ℂ | |
| 3 | 1, 2 | wss 3197 | 1 wff ℝ ⊆ ℂ |
| Colors of variables: wff set class |
| This axiom is referenced by: recn 8128 reex 8129 recni 8154 rerecapb 8986 nnsscn 9111 nn0sscn 9370 qsscn 9822 reexpcl 10773 rpexpcl 10775 reexpclzap 10776 expge0 10792 expge1 10793 abscn2 11821 recn2 11823 imcn2 11824 climabs 11826 climre 11828 climim 11829 climcvg1nlem 11855 fsumrecl 11907 fsumrpcl 11910 fsumge0 11965 fsumre 11978 fsumim 11979 fprodrecl 12114 fprodrpcl 12117 fprodreclf 12120 fprodge0 12143 fprodge1 12145 reeff1 12206 remet 15216 tgioo2cntop 15225 tgioo2 15227 abscncf 15253 recncf 15254 imcncf 15255 cnrehmeocntop 15278 maxcncf 15283 mincncf 15284 ivthreinc 15313 hovercncf 15314 limcimolemlt 15332 recnprss 15355 dvidrelem 15360 dvidre 15365 dvcjbr 15376 dvfre 15378 reeff1olem 15439 cosz12 15448 ioocosf1o 15522 |
| Copyright terms: Public domain | W3C validator |