![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-resscn | GIF version |
Description: The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, justified by Theorem axresscn 7859. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
ax-resscn | ⊢ ℝ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cr 7810 | . 2 class ℝ | |
2 | cc 7809 | . 2 class ℂ | |
3 | 1, 2 | wss 3130 | 1 wff ℝ ⊆ ℂ |
Colors of variables: wff set class |
This axiom is referenced by: recn 7944 reex 7945 recni 7969 rerecapb 8800 nnsscn 8924 nn0sscn 9181 qsscn 9631 reexpcl 10537 rpexpcl 10539 reexpclzap 10540 expge0 10556 expge1 10557 abscn2 11323 recn2 11325 imcn2 11326 climabs 11328 climre 11330 climim 11331 climcvg1nlem 11357 fsumrecl 11409 fsumrpcl 11412 fsumge0 11467 fsumre 11480 fsumim 11481 fprodrecl 11616 fprodrpcl 11619 fprodreclf 11622 fprodge0 11645 fprodge1 11647 reeff1 11708 remet 14043 tgioo2cntop 14052 abscncf 14075 recncf 14076 imcncf 14077 cnrehmeocntop 14096 limcimolemlt 14136 recnprss 14159 dvcjbr 14175 dvfre 14177 reeff1olem 14195 cosz12 14204 ioocosf1o 14278 |
Copyright terms: Public domain | W3C validator |