![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elexi | GIF version |
Description: If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
elisseti.1 | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
elexi | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisseti.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | elex 2749 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 Vcvv 2738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-v 2740 |
This theorem is referenced by: elpwi2 4159 onunisuci 4433 ordsoexmid 4562 1oex 6425 fnoei 6453 oeiexg 6454 endisj 6824 unfiexmid 6917 snexxph 6949 djuex 7042 0ct 7106 nninfex 7120 infnninfOLD 7123 nnnninf 7124 ctssexmid 7148 nninfdcinf 7169 nninfwlporlem 7171 nninfwlpoimlemg 7173 pm54.43 7189 pw1ne3 7229 3nsssucpw1 7235 2omotaplemst 7257 prarloclemarch2 7418 opelreal 7826 elreal 7827 elreal2 7829 eqresr 7835 c0ex 7951 1ex 7952 pnfex 8011 sup3exmid 8914 2ex 8991 3ex 8995 elxr 9776 setsslid 12513 setsslnid 12514 prdsex 12718 rmodislmod 13441 lgsdir2lem3 14434 subctctexmid 14753 0nninf 14756 nninffeq 14772 |
Copyright terms: Public domain | W3C validator |