| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elexi | GIF version | ||
| Description: If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.) |
| Ref | Expression |
|---|---|
| elisseti.1 | ⊢ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| elexi | ⊢ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisseti.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | elex 2788 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2178 Vcvv 2776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 |
| This theorem is referenced by: elpwi2 4218 onunisuci 4497 ordsoexmid 4628 funopdmsn 5787 1oex 6533 fnoei 6561 oeiexg 6562 endisj 6944 unfiexmid 7041 snexxph 7078 djuex 7171 0ct 7235 nninfex 7249 infnninfOLD 7253 nnnninf 7254 ctssexmid 7278 nninfdcinf 7299 nninfwlporlem 7301 nninfwlpoimlemg 7303 pm54.43 7324 pw1ne3 7376 3nsssucpw1 7382 2omotaplemst 7405 prarloclemarch2 7567 opelreal 7975 elreal 7976 elreal2 7978 eqresr 7984 c0ex 8101 1ex 8102 pnfex 8161 sup3exmid 9065 2ex 9143 3ex 9147 elxr 9933 xnn0nnen 10619 lsw0 11078 setsslid 12998 setsslnid 12999 prdsex 13216 rmodislmod 14228 fnpsr 14544 lgsdir2lem3 15622 funvtxval0d 15747 funvtxvalg 15750 funiedgvalg 15751 struct2slots2dom 15752 structiedg0val 15754 edgstruct 15775 2omapen 16133 subctctexmid 16139 0nninf 16143 nninffeq 16159 |
| Copyright terms: Public domain | W3C validator |