| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elexi | GIF version | ||
| Description: If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.) |
| Ref | Expression |
|---|---|
| elisseti.1 | ⊢ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| elexi | ⊢ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisseti.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | elex 2811 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: elpwi2 4241 onunisuci 4522 ordsoexmid 4653 funopdmsn 5818 1oex 6568 fnoei 6596 oeiexg 6597 endisj 6979 unfiexmid 7076 snexxph 7113 djuex 7206 0ct 7270 nninfex 7284 infnninfOLD 7288 nnnninf 7289 ctssexmid 7313 nninfdcinf 7334 nninfwlporlem 7336 nninfwlpoimlemg 7338 pm54.43 7359 pw1ne3 7411 3nsssucpw1 7417 2omotaplemst 7440 prarloclemarch2 7602 opelreal 8010 elreal 8011 elreal2 8013 eqresr 8019 c0ex 8136 1ex 8137 pnfex 8196 sup3exmid 9100 2ex 9178 3ex 9182 elxr 9968 xnn0nnen 10654 lsw0 11114 setsslid 13078 setsslnid 13079 bassetsnn 13084 prdsex 13297 rmodislmod 14309 fnpsr 14625 lgsdir2lem3 15703 funvtxval0d 15828 funvtxvalg 15831 funiedgvalg 15832 struct2slots2dom 15833 structiedg0val 15835 edgstruct 15858 2omapen 16319 subctctexmid 16325 0nninf 16329 nninffeq 16345 |
| Copyright terms: Public domain | W3C validator |