| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elexi | GIF version | ||
| Description: If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.) |
| Ref | Expression |
|---|---|
| elisseti.1 | ⊢ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| elexi | ⊢ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisseti.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | elex 2783 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2176 Vcvv 2772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: elpwi2 4202 onunisuci 4479 ordsoexmid 4610 funopdmsn 5764 1oex 6510 fnoei 6538 oeiexg 6539 endisj 6919 unfiexmid 7015 snexxph 7052 djuex 7145 0ct 7209 nninfex 7223 infnninfOLD 7227 nnnninf 7228 ctssexmid 7252 nninfdcinf 7273 nninfwlporlem 7275 nninfwlpoimlemg 7277 pm54.43 7298 pw1ne3 7342 3nsssucpw1 7348 2omotaplemst 7370 prarloclemarch2 7532 opelreal 7940 elreal 7941 elreal2 7943 eqresr 7949 c0ex 8066 1ex 8067 pnfex 8126 sup3exmid 9030 2ex 9108 3ex 9112 elxr 9898 xnn0nnen 10582 lsw0 11041 setsslid 12883 setsslnid 12884 prdsex 13101 rmodislmod 14113 fnpsr 14429 lgsdir2lem3 15507 funvtxval0d 15630 funvtxvalg 15633 funiedgvalg 15634 struct2slots2dom 15635 structiedg0val 15637 edgstruct 15656 2omapen 15933 subctctexmid 15937 0nninf 15941 nninffeq 15957 |
| Copyright terms: Public domain | W3C validator |