ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elexi GIF version

Theorem elexi 2775
Description: If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
elisseti.1 𝐴𝐵
Assertion
Ref Expression
elexi 𝐴 ∈ V

Proof of Theorem elexi
StepHypRef Expression
1 elisseti.1 . 2 𝐴𝐵
2 elex 2774 . 2 (𝐴𝐵𝐴 ∈ V)
31, 2ax-mp 5 1 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2167  Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765
This theorem is referenced by:  elpwi2  4192  onunisuci  4468  ordsoexmid  4599  1oex  6491  fnoei  6519  oeiexg  6520  endisj  6892  unfiexmid  6988  snexxph  7025  djuex  7118  0ct  7182  nninfex  7196  infnninfOLD  7200  nnnninf  7201  ctssexmid  7225  nninfdcinf  7246  nninfwlporlem  7248  nninfwlpoimlemg  7250  pm54.43  7271  pw1ne3  7315  3nsssucpw1  7321  2omotaplemst  7343  prarloclemarch2  7505  opelreal  7913  elreal  7914  elreal2  7916  eqresr  7922  c0ex  8039  1ex  8040  pnfex  8099  sup3exmid  9003  2ex  9081  3ex  9085  elxr  9870  xnn0nnen  10548  setsslid  12756  setsslnid  12757  prdsex  12973  rmodislmod  13985  fnpsr  14301  lgsdir2lem3  15379  2omapen  15751  subctctexmid  15755  0nninf  15759  nninffeq  15775
  Copyright terms: Public domain W3C validator