Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elexi | GIF version |
Description: If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
elisseti.1 | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
elexi | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisseti.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | elex 2723 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2128 Vcvv 2712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-v 2714 |
This theorem is referenced by: elpwi2 4121 onunisuci 4394 ordsoexmid 4523 1oex 6373 fnoei 6401 oeiexg 6402 endisj 6771 unfiexmid 6864 snexxph 6896 djuex 6989 0ct 7053 nninfex 7067 infnninfOLD 7070 nnnninf 7071 ctssexmid 7095 pm54.43 7127 pw1ne3 7167 3nsssucpw1 7173 prarloclemarch2 7341 opelreal 7749 elreal 7750 elreal2 7752 eqresr 7758 c0ex 7874 1ex 7875 pnfex 7933 sup3exmid 8833 2ex 8910 3ex 8914 elxr 9689 setsslid 12310 setsslnid 12311 subctctexmid 13644 0nninf 13647 nninffeq 13663 |
Copyright terms: Public domain | W3C validator |