| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elexi | GIF version | ||
| Description: If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.) |
| Ref | Expression |
|---|---|
| elisseti.1 | ⊢ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| elexi | ⊢ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisseti.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | elex 2774 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: elpwi2 4192 onunisuci 4468 ordsoexmid 4599 1oex 6491 fnoei 6519 oeiexg 6520 endisj 6892 unfiexmid 6988 snexxph 7025 djuex 7118 0ct 7182 nninfex 7196 infnninfOLD 7200 nnnninf 7201 ctssexmid 7225 nninfdcinf 7246 nninfwlporlem 7248 nninfwlpoimlemg 7250 pm54.43 7271 pw1ne3 7315 3nsssucpw1 7321 2omotaplemst 7343 prarloclemarch2 7505 opelreal 7913 elreal 7914 elreal2 7916 eqresr 7922 c0ex 8039 1ex 8040 pnfex 8099 sup3exmid 9003 2ex 9081 3ex 9085 elxr 9870 xnn0nnen 10548 setsslid 12756 setsslnid 12757 prdsex 12973 rmodislmod 13985 fnpsr 14301 lgsdir2lem3 15379 2omapen 15751 subctctexmid 15755 0nninf 15759 nninffeq 15775 |
| Copyright terms: Public domain | W3C validator |