Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elexi | GIF version |
Description: If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
elisseti.1 | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
elexi | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisseti.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | elex 2741 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: elpwi2 4144 onunisuci 4417 ordsoexmid 4546 1oex 6403 fnoei 6431 oeiexg 6432 endisj 6802 unfiexmid 6895 snexxph 6927 djuex 7020 0ct 7084 nninfex 7098 infnninfOLD 7101 nnnninf 7102 ctssexmid 7126 nninfdcinf 7147 nninfwlporlem 7149 nninfwlpoimlemg 7151 pm54.43 7167 pw1ne3 7207 3nsssucpw1 7213 prarloclemarch2 7381 opelreal 7789 elreal 7790 elreal2 7792 eqresr 7798 c0ex 7914 1ex 7915 pnfex 7973 sup3exmid 8873 2ex 8950 3ex 8954 elxr 9733 setsslid 12466 setsslnid 12467 lgsdir2lem3 13725 subctctexmid 14034 0nninf 14037 nninffeq 14053 |
Copyright terms: Public domain | W3C validator |