Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elexi | GIF version |
Description: If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
elisseti.1 | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
elexi | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisseti.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | elex 2737 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: elpwi2 4137 onunisuci 4410 ordsoexmid 4539 1oex 6392 fnoei 6420 oeiexg 6421 endisj 6790 unfiexmid 6883 snexxph 6915 djuex 7008 0ct 7072 nninfex 7086 infnninfOLD 7089 nnnninf 7090 ctssexmid 7114 pm54.43 7146 pw1ne3 7186 3nsssucpw1 7192 prarloclemarch2 7360 opelreal 7768 elreal 7769 elreal2 7771 eqresr 7777 c0ex 7893 1ex 7894 pnfex 7952 sup3exmid 8852 2ex 8929 3ex 8933 elxr 9712 setsslid 12444 setsslnid 12445 lgsdir2lem3 13571 subctctexmid 13881 0nninf 13884 nninffeq 13900 |
Copyright terms: Public domain | W3C validator |