| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elexi | GIF version | ||
| Description: If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.) |
| Ref | Expression |
|---|---|
| elisseti.1 | ⊢ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| elexi | ⊢ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisseti.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | elex 2782 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 Vcvv 2771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 |
| This theorem is referenced by: elpwi2 4201 onunisuci 4478 ordsoexmid 4609 funopdmsn 5763 1oex 6509 fnoei 6537 oeiexg 6538 endisj 6918 unfiexmid 7014 snexxph 7051 djuex 7144 0ct 7208 nninfex 7222 infnninfOLD 7226 nnnninf 7227 ctssexmid 7251 nninfdcinf 7272 nninfwlporlem 7274 nninfwlpoimlemg 7276 pm54.43 7297 pw1ne3 7341 3nsssucpw1 7347 2omotaplemst 7369 prarloclemarch2 7531 opelreal 7939 elreal 7940 elreal2 7942 eqresr 7948 c0ex 8065 1ex 8066 pnfex 8125 sup3exmid 9029 2ex 9107 3ex 9111 elxr 9897 xnn0nnen 10580 lsw0 11039 setsslid 12854 setsslnid 12855 prdsex 13072 rmodislmod 14084 fnpsr 14400 lgsdir2lem3 15478 funvtxval0d 15601 funvtxvalg 15604 funiedgvalg 15605 struct2slots2dom 15606 structiedg0val 15608 2omapen 15895 subctctexmid 15899 0nninf 15903 nninffeq 15919 |
| Copyright terms: Public domain | W3C validator |