![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elexi | GIF version |
Description: If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
elisseti.1 | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
elexi | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisseti.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | elex 2771 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 |
This theorem is referenced by: elpwi2 4187 onunisuci 4463 ordsoexmid 4594 1oex 6477 fnoei 6505 oeiexg 6506 endisj 6878 unfiexmid 6974 snexxph 7009 djuex 7102 0ct 7166 nninfex 7180 infnninfOLD 7184 nnnninf 7185 ctssexmid 7209 nninfdcinf 7230 nninfwlporlem 7232 nninfwlpoimlemg 7234 pm54.43 7250 pw1ne3 7290 3nsssucpw1 7296 2omotaplemst 7318 prarloclemarch2 7479 opelreal 7887 elreal 7888 elreal2 7890 eqresr 7896 c0ex 8013 1ex 8014 pnfex 8073 sup3exmid 8976 2ex 9054 3ex 9058 elxr 9842 xnn0nnen 10508 setsslid 12669 setsslnid 12670 prdsex 12880 rmodislmod 13847 fnpsr 14153 lgsdir2lem3 15146 subctctexmid 15491 0nninf 15494 nninffeq 15510 |
Copyright terms: Public domain | W3C validator |