Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3cn | GIF version |
Description: The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.) |
Ref | Expression |
---|---|
3cn | ⊢ 3 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 8931 | . 2 ⊢ 3 ∈ ℝ | |
2 | 1 | recni 7911 | 1 ⊢ 3 ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ℂcc 7751 3c3 8909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 df-2 8916 df-3 8917 |
This theorem is referenced by: 3ex 8933 3m1e2 8977 4m1e3 8978 3p2e5 8998 3p3e6 8999 4p4e8 9002 5p4e9 9005 3t1e3 9012 3t2e6 9013 3t3e9 9014 8th4div3 9076 halfpm6th 9077 6p4e10 9393 9t8e72 9449 halfthird 9464 fzo0to42pr 10155 sq3 10551 expnass 10560 fac3 10645 4bc3eq4 10686 ef01bndlem 11697 sin01bnd 11698 cos01bnd 11699 cos1bnd 11700 cos2bnd 11701 cos01gt0 11703 3dvdsdec 11802 3dvds2dec 11803 3lcm2e6woprm 12018 cosq23lt0 13404 tangtx 13409 sincos6thpi 13413 sincos3rdpi 13414 pigt3 13415 binom4 13547 lgsdir2lem1 13579 lgsdir2lem5 13583 ex-exp 13618 ex-dvds 13621 ex-gcd 13622 |
Copyright terms: Public domain | W3C validator |