| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3cn | GIF version | ||
| Description: The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.) |
| Ref | Expression |
|---|---|
| 3cn | ⊢ 3 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 9081 | . 2 ⊢ 3 ∈ ℝ | |
| 2 | 1 | recni 8055 | 1 ⊢ 3 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ℂcc 7894 3c3 9059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-2 9066 df-3 9067 |
| This theorem is referenced by: 3ex 9083 3m1e2 9127 4m1e3 9128 3p2e5 9149 3p3e6 9150 4p4e8 9153 5p4e9 9156 3t1e3 9163 3t2e6 9164 3t3e9 9165 8th4div3 9227 halfpm6th 9228 6p4e10 9545 9t8e72 9601 halfthird 9616 fzo0to42pr 10313 sq3 10745 expnass 10754 fac3 10841 4bc3eq4 10882 ef01bndlem 11938 sin01bnd 11939 cos01bnd 11940 cos1bnd 11941 cos2bnd 11942 cos01gt0 11945 3dvdsdec 12047 3dvds2dec 12048 5ndvds3 12116 3lcm2e6woprm 12279 2exp6 12627 2exp16 12631 cosq23lt0 15153 tangtx 15158 sincos6thpi 15162 sincos3rdpi 15163 pigt3 15164 binom4 15299 lgsdir2lem1 15353 lgsdir2lem5 15357 2lgslem3b 15419 2lgslem3d 15421 2lgsoddprmlem3c 15434 2lgsoddprmlem3d 15435 ex-exp 15457 ex-dvds 15460 ex-gcd 15461 |
| Copyright terms: Public domain | W3C validator |