| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3cn | GIF version | ||
| Description: The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.) |
| Ref | Expression |
|---|---|
| 3cn | ⊢ 3 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 9180 | . 2 ⊢ 3 ∈ ℝ | |
| 2 | 1 | recni 8154 | 1 ⊢ 3 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ℂcc 7993 3c3 9158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-2 9165 df-3 9166 |
| This theorem is referenced by: 3ex 9182 3m1e2 9226 4m1e3 9227 3p2e5 9248 3p3e6 9249 4p4e8 9252 5p4e9 9255 3t1e3 9262 3t2e6 9263 3t3e9 9264 8th4div3 9326 halfpm6th 9327 6p4e10 9645 9t8e72 9701 halfthird 9716 fzo0to42pr 10421 sq3 10853 expnass 10862 fac3 10949 4bc3eq4 10990 ef01bndlem 12262 sin01bnd 12263 cos01bnd 12264 cos1bnd 12265 cos2bnd 12266 cos01gt0 12269 3dvdsdec 12371 3dvds2dec 12372 5ndvds3 12440 3lcm2e6woprm 12603 2exp6 12951 2exp16 12955 cosq23lt0 15501 tangtx 15506 sincos6thpi 15510 sincos3rdpi 15511 pigt3 15512 binom4 15647 lgsdir2lem1 15701 lgsdir2lem5 15705 2lgslem3b 15767 2lgslem3d 15769 2lgsoddprmlem3c 15782 2lgsoddprmlem3d 15783 ex-exp 16049 ex-dvds 16052 ex-gcd 16053 |
| Copyright terms: Public domain | W3C validator |