ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3cn GIF version

Theorem 3cn 9057
Description: The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.)
Assertion
Ref Expression
3cn 3 ∈ ℂ

Proof of Theorem 3cn
StepHypRef Expression
1 3re 9056 . 2 3 ∈ ℝ
21recni 8031 1 3 ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2164  cc 7870  3c3 9034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166  df-2 9041  df-3 9042
This theorem is referenced by:  3ex  9058  3m1e2  9102  4m1e3  9103  3p2e5  9123  3p3e6  9124  4p4e8  9127  5p4e9  9130  3t1e3  9137  3t2e6  9138  3t3e9  9139  8th4div3  9201  halfpm6th  9202  6p4e10  9519  9t8e72  9575  halfthird  9590  fzo0to42pr  10287  sq3  10707  expnass  10716  fac3  10803  4bc3eq4  10844  ef01bndlem  11899  sin01bnd  11900  cos01bnd  11901  cos1bnd  11902  cos2bnd  11903  cos01gt0  11906  3dvdsdec  12006  3dvds2dec  12007  3lcm2e6woprm  12224  cosq23lt0  14968  tangtx  14973  sincos6thpi  14977  sincos3rdpi  14978  pigt3  14979  binom4  15111  lgsdir2lem1  15144  lgsdir2lem5  15148  2lgsoddprmlem3c  15197  2lgsoddprmlem3d  15198  ex-exp  15219  ex-dvds  15222  ex-gcd  15223
  Copyright terms: Public domain W3C validator