| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3cn | GIF version | ||
| Description: The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.) |
| Ref | Expression |
|---|---|
| 3cn | ⊢ 3 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 9110 | . 2 ⊢ 3 ∈ ℝ | |
| 2 | 1 | recni 8084 | 1 ⊢ 3 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2176 ℂcc 7923 3c3 9088 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-2 9095 df-3 9096 |
| This theorem is referenced by: 3ex 9112 3m1e2 9156 4m1e3 9157 3p2e5 9178 3p3e6 9179 4p4e8 9182 5p4e9 9185 3t1e3 9192 3t2e6 9193 3t3e9 9194 8th4div3 9256 halfpm6th 9257 6p4e10 9575 9t8e72 9631 halfthird 9646 fzo0to42pr 10349 sq3 10781 expnass 10790 fac3 10877 4bc3eq4 10918 ef01bndlem 12067 sin01bnd 12068 cos01bnd 12069 cos1bnd 12070 cos2bnd 12071 cos01gt0 12074 3dvdsdec 12176 3dvds2dec 12177 5ndvds3 12245 3lcm2e6woprm 12408 2exp6 12756 2exp16 12760 cosq23lt0 15305 tangtx 15310 sincos6thpi 15314 sincos3rdpi 15315 pigt3 15316 binom4 15451 lgsdir2lem1 15505 lgsdir2lem5 15509 2lgslem3b 15571 2lgslem3d 15573 2lgsoddprmlem3c 15586 2lgsoddprmlem3d 15587 ex-exp 15663 ex-dvds 15666 ex-gcd 15667 |
| Copyright terms: Public domain | W3C validator |