| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3cn | GIF version | ||
| Description: The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.) |
| Ref | Expression |
|---|---|
| 3cn | ⊢ 3 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 9083 | . 2 ⊢ 3 ∈ ℝ | |
| 2 | 1 | recni 8057 | 1 ⊢ 3 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ℂcc 7896 3c3 9061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-2 9068 df-3 9069 |
| This theorem is referenced by: 3ex 9085 3m1e2 9129 4m1e3 9130 3p2e5 9151 3p3e6 9152 4p4e8 9155 5p4e9 9158 3t1e3 9165 3t2e6 9166 3t3e9 9167 8th4div3 9229 halfpm6th 9230 6p4e10 9547 9t8e72 9603 halfthird 9618 fzo0to42pr 10315 sq3 10747 expnass 10756 fac3 10843 4bc3eq4 10884 ef01bndlem 11940 sin01bnd 11941 cos01bnd 11942 cos1bnd 11943 cos2bnd 11944 cos01gt0 11947 3dvdsdec 12049 3dvds2dec 12050 5ndvds3 12118 3lcm2e6woprm 12281 2exp6 12629 2exp16 12633 cosq23lt0 15177 tangtx 15182 sincos6thpi 15186 sincos3rdpi 15187 pigt3 15188 binom4 15323 lgsdir2lem1 15377 lgsdir2lem5 15381 2lgslem3b 15443 2lgslem3d 15445 2lgsoddprmlem3c 15458 2lgsoddprmlem3d 15459 ex-exp 15481 ex-dvds 15484 ex-gcd 15485 |
| Copyright terms: Public domain | W3C validator |