| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.41v | GIF version | ||
| Description: Restricted quantifier version of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 17-Dec-2003.) |
| Ref | Expression |
|---|---|
| r19.41v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | r19.41 2662 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-rex 2491 |
| This theorem is referenced by: r19.42v 2664 3reeanv 2678 reuind 2982 iuncom4 3940 dfiun2g 3965 iunxiun 4015 inuni 4207 xpiundi 4741 xpiundir 4742 imaco 5197 coiun 5201 abrexco 5841 imaiun 5842 isoini 5900 rexrnmpo 6074 mapsnen 6917 genpassl 7657 genpassu 7658 4fvwrd4 10282 4sqlem12 12800 metrest 15053 trirec0xor 16125 |
| Copyright terms: Public domain | W3C validator |