ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.41v GIF version

Theorem r19.41v 2650
Description: Restricted quantifier version of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 17-Dec-2003.)
Assertion
Ref Expression
r19.41v (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem r19.41v
StepHypRef Expression
1 nfv 1539 . 2 𝑥𝜓
21r19.41 2649 1 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-rex 2478
This theorem is referenced by:  r19.42v  2651  3reeanv  2665  reuind  2966  iuncom4  3920  dfiun2g  3945  iunxiun  3995  inuni  4185  xpiundi  4718  xpiundir  4719  imaco  5172  coiun  5176  abrexco  5803  imaiun  5804  isoini  5862  rexrnmpo  6035  mapsnen  6867  genpassl  7586  genpassu  7587  4fvwrd4  10209  4sqlem12  12543  metrest  14685  trirec0xor  15605
  Copyright terms: Public domain W3C validator