| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reeanv | GIF version | ||
| Description: Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.) |
| Ref | Expression |
|---|---|
| reeanv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 1, 2 | reean 2700 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 |
| This theorem is referenced by: 3reeanv 2702 fliftfun 5919 tfrlem5 6458 eroveu 6771 erovlem 6772 xpf1o 7001 genprndl 7704 genprndu 7705 ltpopr 7778 ltsopr 7779 cauappcvgprlemdisj 7834 caucvgprlemdisj 7857 caucvgprprlemdisj 7885 exbtwnzlemex 10464 rebtwn2z 10469 rexanre 11726 summodc 11889 prodmodclem2 12083 prodmodc 12084 dvds2lem 12309 odd2np1 12379 opoe 12401 omoe 12402 opeo 12403 omeo 12404 gcddiv 12535 divgcdcoprmex 12619 pcqmul 12821 pcadd 12858 mul4sq 12912 4sqlem12 12920 dvdsrtr 14059 unitgrp 14074 lss1d 14341 znidom 14615 tgcl 14732 restbasg 14836 txuni2 14924 txbas 14926 txcnp 14939 blin2 15100 tgqioo 15223 plyadd 15419 plymul 15420 mul2sq 15789 2sqlem5 15792 uhgr2edg 15998 |
| Copyright terms: Public domain | W3C validator |