| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reeanv | GIF version | ||
| Description: Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.) |
| Ref | Expression |
|---|---|
| reeanv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 1, 2 | reean 2666 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 |
| This theorem is referenced by: 3reeanv 2668 fliftfun 5846 tfrlem5 6381 eroveu 6694 erovlem 6695 xpf1o 6914 genprndl 7607 genprndu 7608 ltpopr 7681 ltsopr 7682 cauappcvgprlemdisj 7737 caucvgprlemdisj 7760 caucvgprprlemdisj 7788 exbtwnzlemex 10358 rebtwn2z 10363 rexanre 11404 summodc 11567 prodmodclem2 11761 prodmodc 11762 dvds2lem 11987 odd2np1 12057 opoe 12079 omoe 12080 opeo 12081 omeo 12082 gcddiv 12213 divgcdcoprmex 12297 pcqmul 12499 pcadd 12536 mul4sq 12590 4sqlem12 12598 dvdsrtr 13735 unitgrp 13750 lss1d 14017 znidom 14291 tgcl 14408 restbasg 14512 txuni2 14600 txbas 14602 txcnp 14615 blin2 14776 tgqioo 14899 plyadd 15095 plymul 15096 mul2sq 15465 2sqlem5 15468 |
| Copyright terms: Public domain | W3C validator |