![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reeanv | GIF version |
Description: Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.) |
Ref | Expression |
---|---|
reeanv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | 1, 2 | reean 2663 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 |
This theorem is referenced by: 3reeanv 2665 fliftfun 5840 tfrlem5 6369 eroveu 6682 erovlem 6683 xpf1o 6902 genprndl 7583 genprndu 7584 ltpopr 7657 ltsopr 7658 cauappcvgprlemdisj 7713 caucvgprlemdisj 7736 caucvgprprlemdisj 7764 exbtwnzlemex 10321 rebtwn2z 10326 rexanre 11367 summodc 11529 prodmodclem2 11723 prodmodc 11724 dvds2lem 11949 odd2np1 12017 opoe 12039 omoe 12040 opeo 12041 omeo 12042 gcddiv 12159 divgcdcoprmex 12243 pcqmul 12444 pcadd 12481 mul4sq 12535 4sqlem12 12543 dvdsrtr 13600 unitgrp 13615 lss1d 13882 znidom 14156 tgcl 14243 restbasg 14347 txuni2 14435 txbas 14437 txcnp 14450 blin2 14611 tgqioo 14734 plyadd 14930 plymul 14931 mul2sq 15273 2sqlem5 15276 |
Copyright terms: Public domain | W3C validator |