Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reeanv | GIF version |
Description: Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.) |
Ref | Expression |
---|---|
reeanv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | 1, 2 | reean 2633 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wrex 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 |
This theorem is referenced by: 3reeanv 2635 fliftfun 5763 tfrlem5 6278 eroveu 6588 erovlem 6589 xpf1o 6806 genprndl 7458 genprndu 7459 ltpopr 7532 ltsopr 7533 cauappcvgprlemdisj 7588 caucvgprlemdisj 7611 caucvgprprlemdisj 7639 exbtwnzlemex 10181 rebtwn2z 10186 rexanre 11158 summodc 11320 prodmodclem2 11514 prodmodc 11515 dvds2lem 11739 odd2np1 11806 opoe 11828 omoe 11829 opeo 11830 omeo 11831 gcddiv 11948 divgcdcoprmex 12030 pcqmul 12231 pcadd 12267 mul4sq 12320 tgcl 12664 restbasg 12768 txuni2 12856 txbas 12858 txcnp 12871 blin2 13032 tgqioo 13147 mul2sq 13552 2sqlem5 13555 |
Copyright terms: Public domain | W3C validator |