| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reeanv | GIF version | ||
| Description: Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.) |
| Ref | Expression |
|---|---|
| reeanv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 1, 2 | reean 2677 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wrex 2487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 |
| This theorem is referenced by: 3reeanv 2679 fliftfun 5888 tfrlem5 6423 eroveu 6736 erovlem 6737 xpf1o 6966 genprndl 7669 genprndu 7670 ltpopr 7743 ltsopr 7744 cauappcvgprlemdisj 7799 caucvgprlemdisj 7822 caucvgprprlemdisj 7850 exbtwnzlemex 10429 rebtwn2z 10434 rexanre 11646 summodc 11809 prodmodclem2 12003 prodmodc 12004 dvds2lem 12229 odd2np1 12299 opoe 12321 omoe 12322 opeo 12323 omeo 12324 gcddiv 12455 divgcdcoprmex 12539 pcqmul 12741 pcadd 12778 mul4sq 12832 4sqlem12 12840 dvdsrtr 13978 unitgrp 13993 lss1d 14260 znidom 14534 tgcl 14651 restbasg 14755 txuni2 14843 txbas 14845 txcnp 14858 blin2 15019 tgqioo 15142 plyadd 15338 plymul 15339 mul2sq 15708 2sqlem5 15711 |
| Copyright terms: Public domain | W3C validator |