![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reeanv | GIF version |
Description: Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.) |
Ref | Expression |
---|---|
reeanv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | 1, 2 | reean 2663 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 |
This theorem is referenced by: 3reeanv 2665 fliftfun 5839 tfrlem5 6367 eroveu 6680 erovlem 6681 xpf1o 6900 genprndl 7581 genprndu 7582 ltpopr 7655 ltsopr 7656 cauappcvgprlemdisj 7711 caucvgprlemdisj 7734 caucvgprprlemdisj 7762 exbtwnzlemex 10318 rebtwn2z 10323 rexanre 11364 summodc 11526 prodmodclem2 11720 prodmodc 11721 dvds2lem 11946 odd2np1 12014 opoe 12036 omoe 12037 opeo 12038 omeo 12039 gcddiv 12156 divgcdcoprmex 12240 pcqmul 12441 pcadd 12478 mul4sq 12532 4sqlem12 12540 dvdsrtr 13597 unitgrp 13612 lss1d 13879 znidom 14145 tgcl 14232 restbasg 14336 txuni2 14424 txbas 14426 txcnp 14439 blin2 14600 tgqioo 14715 plyadd 14897 plymul 14898 mul2sq 15203 2sqlem5 15206 |
Copyright terms: Public domain | W3C validator |