| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reeanv | GIF version | ||
| Description: Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.) |
| Ref | Expression |
|---|---|
| reeanv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 1, 2 | reean 2666 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 |
| This theorem is referenced by: 3reeanv 2668 fliftfun 5843 tfrlem5 6372 eroveu 6685 erovlem 6686 xpf1o 6905 genprndl 7588 genprndu 7589 ltpopr 7662 ltsopr 7663 cauappcvgprlemdisj 7718 caucvgprlemdisj 7741 caucvgprprlemdisj 7769 exbtwnzlemex 10339 rebtwn2z 10344 rexanre 11385 summodc 11548 prodmodclem2 11742 prodmodc 11743 dvds2lem 11968 odd2np1 12038 opoe 12060 omoe 12061 opeo 12062 omeo 12063 gcddiv 12186 divgcdcoprmex 12270 pcqmul 12472 pcadd 12509 mul4sq 12563 4sqlem12 12571 dvdsrtr 13657 unitgrp 13672 lss1d 13939 znidom 14213 tgcl 14300 restbasg 14404 txuni2 14492 txbas 14494 txcnp 14507 blin2 14668 tgqioo 14791 plyadd 14987 plymul 14988 mul2sq 15357 2sqlem5 15360 |
| Copyright terms: Public domain | W3C validator |