| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reeanv | GIF version | ||
| Description: Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.) |
| Ref | Expression |
|---|---|
| reeanv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 1, 2 | reean 2666 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 |
| This theorem is referenced by: 3reeanv 2668 fliftfun 5846 tfrlem5 6381 eroveu 6694 erovlem 6695 xpf1o 6914 genprndl 7605 genprndu 7606 ltpopr 7679 ltsopr 7680 cauappcvgprlemdisj 7735 caucvgprlemdisj 7758 caucvgprprlemdisj 7786 exbtwnzlemex 10356 rebtwn2z 10361 rexanre 11402 summodc 11565 prodmodclem2 11759 prodmodc 11760 dvds2lem 11985 odd2np1 12055 opoe 12077 omoe 12078 opeo 12079 omeo 12080 gcddiv 12211 divgcdcoprmex 12295 pcqmul 12497 pcadd 12534 mul4sq 12588 4sqlem12 12596 dvdsrtr 13733 unitgrp 13748 lss1d 14015 znidom 14289 tgcl 14384 restbasg 14488 txuni2 14576 txbas 14578 txcnp 14591 blin2 14752 tgqioo 14875 plyadd 15071 plymul 15072 mul2sq 15441 2sqlem5 15444 |
| Copyright terms: Public domain | W3C validator |