| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reeanv | GIF version | ||
| Description: Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.) |
| Ref | Expression |
|---|---|
| reeanv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1551 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 1, 2 | reean 2675 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wrex 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 |
| This theorem is referenced by: 3reeanv 2677 fliftfun 5865 tfrlem5 6400 eroveu 6713 erovlem 6714 xpf1o 6941 genprndl 7634 genprndu 7635 ltpopr 7708 ltsopr 7709 cauappcvgprlemdisj 7764 caucvgprlemdisj 7787 caucvgprprlemdisj 7815 exbtwnzlemex 10392 rebtwn2z 10397 rexanre 11531 summodc 11694 prodmodclem2 11888 prodmodc 11889 dvds2lem 12114 odd2np1 12184 opoe 12206 omoe 12207 opeo 12208 omeo 12209 gcddiv 12340 divgcdcoprmex 12424 pcqmul 12626 pcadd 12663 mul4sq 12717 4sqlem12 12725 dvdsrtr 13863 unitgrp 13878 lss1d 14145 znidom 14419 tgcl 14536 restbasg 14640 txuni2 14728 txbas 14730 txcnp 14743 blin2 14904 tgqioo 15027 plyadd 15223 plymul 15224 mul2sq 15593 2sqlem5 15596 |
| Copyright terms: Public domain | W3C validator |