![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > absneu | GIF version |
Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.) |
Ref | Expression |
---|---|
absneu | ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∣ 𝜑} = {𝐴}) → ∃!𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3457 | . . . . 5 ⊢ (𝑦 = 𝐴 → {𝑦} = {𝐴}) | |
2 | 1 | eqeq2d 2099 | . . . 4 ⊢ (𝑦 = 𝐴 → ({𝑥 ∣ 𝜑} = {𝑦} ↔ {𝑥 ∣ 𝜑} = {𝐴})) |
3 | 2 | spcegv 2707 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({𝑥 ∣ 𝜑} = {𝐴} → ∃𝑦{𝑥 ∣ 𝜑} = {𝑦})) |
4 | 3 | imp 122 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∣ 𝜑} = {𝐴}) → ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
5 | euabsn2 3511 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
6 | 4, 5 | sylibr 132 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∣ 𝜑} = {𝐴}) → ∃!𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1289 ∃wex 1426 ∈ wcel 1438 ∃!weu 1948 {cab 2074 {csn 3446 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-sn 3452 |
This theorem is referenced by: rabsneu 3515 |
Copyright terms: Public domain | W3C validator |