ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absneu GIF version

Theorem absneu 3514
Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.)
Assertion
Ref Expression
absneu ((𝐴𝑉 ∧ {𝑥𝜑} = {𝐴}) → ∃!𝑥𝜑)

Proof of Theorem absneu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sneq 3457 . . . . 5 (𝑦 = 𝐴 → {𝑦} = {𝐴})
21eqeq2d 2099 . . . 4 (𝑦 = 𝐴 → ({𝑥𝜑} = {𝑦} ↔ {𝑥𝜑} = {𝐴}))
32spcegv 2707 . . 3 (𝐴𝑉 → ({𝑥𝜑} = {𝐴} → ∃𝑦{𝑥𝜑} = {𝑦}))
43imp 122 . 2 ((𝐴𝑉 ∧ {𝑥𝜑} = {𝐴}) → ∃𝑦{𝑥𝜑} = {𝑦})
5 euabsn2 3511 . 2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
64, 5sylibr 132 1 ((𝐴𝑉 ∧ {𝑥𝜑} = {𝐴}) → ∃!𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wex 1426  wcel 1438  ∃!weu 1948  {cab 2074  {csn 3446
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-sn 3452
This theorem is referenced by:  rabsneu  3515
  Copyright terms: Public domain W3C validator