![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > euabsn2 | GIF version |
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
euabsn2 | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 1958 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
2 | abeq1 2204 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ ∀𝑥(𝜑 ↔ 𝑥 ∈ {𝑦})) | |
3 | velsn 3483 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦} ↔ 𝑥 = 𝑦) | |
4 | 3 | bibi2i 226 | . . . . 5 ⊢ ((𝜑 ↔ 𝑥 ∈ {𝑦}) ↔ (𝜑 ↔ 𝑥 = 𝑦)) |
5 | 4 | albii 1411 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 ∈ {𝑦}) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
6 | 2, 5 | bitri 183 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
7 | 6 | exbii 1548 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
8 | 1, 7 | bitr4i 186 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1294 = wceq 1296 ∃wex 1433 ∈ wcel 1445 ∃!weu 1955 {cab 2081 {csn 3466 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-sn 3472 |
This theorem is referenced by: euabsn 3532 reusn 3533 absneu 3534 uniintabim 3747 euabex 4076 nfvres 5372 eusvobj2 5676 |
Copyright terms: Public domain | W3C validator |