ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euabsn2 GIF version

Theorem euabsn2 3707
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
euabsn2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem euabsn2
StepHypRef Expression
1 df-eu 2058 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 abeq1 2316 . . . 4 ({𝑥𝜑} = {𝑦} ↔ ∀𝑥(𝜑𝑥 ∈ {𝑦}))
3 velsn 3655 . . . . . 6 (𝑥 ∈ {𝑦} ↔ 𝑥 = 𝑦)
43bibi2i 227 . . . . 5 ((𝜑𝑥 ∈ {𝑦}) ↔ (𝜑𝑥 = 𝑦))
54albii 1494 . . . 4 (∀𝑥(𝜑𝑥 ∈ {𝑦}) ↔ ∀𝑥(𝜑𝑥 = 𝑦))
62, 5bitri 184 . . 3 ({𝑥𝜑} = {𝑦} ↔ ∀𝑥(𝜑𝑥 = 𝑦))
76exbii 1629 . 2 (∃𝑦{𝑥𝜑} = {𝑦} ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
81, 7bitr4i 187 1 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1371   = wceq 1373  wex 1516  ∃!weu 2055  wcel 2177  {cab 2192  {csn 3638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-sn 3644
This theorem is referenced by:  euabsn  3708  reusn  3709  absneu  3710  uniintabim  3928  euabex  4277  nfvres  5623  eusvobj2  5943
  Copyright terms: Public domain W3C validator