ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euabsn2 GIF version

Theorem euabsn2 3735
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
euabsn2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem euabsn2
StepHypRef Expression
1 df-eu 2080 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 abeq1 2339 . . . 4 ({𝑥𝜑} = {𝑦} ↔ ∀𝑥(𝜑𝑥 ∈ {𝑦}))
3 velsn 3683 . . . . . 6 (𝑥 ∈ {𝑦} ↔ 𝑥 = 𝑦)
43bibi2i 227 . . . . 5 ((𝜑𝑥 ∈ {𝑦}) ↔ (𝜑𝑥 = 𝑦))
54albii 1516 . . . 4 (∀𝑥(𝜑𝑥 ∈ {𝑦}) ↔ ∀𝑥(𝜑𝑥 = 𝑦))
62, 5bitri 184 . . 3 ({𝑥𝜑} = {𝑦} ↔ ∀𝑥(𝜑𝑥 = 𝑦))
76exbii 1651 . 2 (∃𝑦{𝑥𝜑} = {𝑦} ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
81, 7bitr4i 187 1 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1393   = wceq 1395  wex 1538  ∃!weu 2077  wcel 2200  {cab 2215  {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sn 3672
This theorem is referenced by:  euabsn  3736  reusn  3737  absneu  3738  uniintabim  3959  euabex  4310  nfvres  5662  eusvobj2  5986
  Copyright terms: Public domain W3C validator