| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > euabsn2 | GIF version | ||
| Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.) | 
| Ref | Expression | 
|---|---|
| euabsn2 | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-eu 2048 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
| 2 | abeq1 2306 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ ∀𝑥(𝜑 ↔ 𝑥 ∈ {𝑦})) | |
| 3 | velsn 3639 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦} ↔ 𝑥 = 𝑦) | |
| 4 | 3 | bibi2i 227 | . . . . 5 ⊢ ((𝜑 ↔ 𝑥 ∈ {𝑦}) ↔ (𝜑 ↔ 𝑥 = 𝑦)) | 
| 5 | 4 | albii 1484 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 ∈ {𝑦}) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | 
| 6 | 2, 5 | bitri 184 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | 
| 7 | 6 | exbii 1619 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | 
| 8 | 1, 7 | bitr4i 187 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1506 ∃!weu 2045 ∈ wcel 2167 {cab 2182 {csn 3622 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sn 3628 | 
| This theorem is referenced by: euabsn 3692 reusn 3693 absneu 3694 uniintabim 3911 euabex 4258 nfvres 5592 eusvobj2 5908 | 
| Copyright terms: Public domain | W3C validator |