Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > euabsn2 | GIF version |
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
euabsn2 | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2017 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
2 | abeq1 2276 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ ∀𝑥(𝜑 ↔ 𝑥 ∈ {𝑦})) | |
3 | velsn 3593 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦} ↔ 𝑥 = 𝑦) | |
4 | 3 | bibi2i 226 | . . . . 5 ⊢ ((𝜑 ↔ 𝑥 ∈ {𝑦}) ↔ (𝜑 ↔ 𝑥 = 𝑦)) |
5 | 4 | albii 1458 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 ∈ {𝑦}) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
6 | 2, 5 | bitri 183 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
7 | 6 | exbii 1593 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
8 | 1, 7 | bitr4i 186 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1341 = wceq 1343 ∃wex 1480 ∃!weu 2014 ∈ wcel 2136 {cab 2151 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sn 3582 |
This theorem is referenced by: euabsn 3646 reusn 3647 absneu 3648 uniintabim 3861 euabex 4203 nfvres 5519 eusvobj2 5828 |
Copyright terms: Public domain | W3C validator |