![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > euabsn2 | GIF version |
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
euabsn2 | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2045 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
2 | abeq1 2303 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ ∀𝑥(𝜑 ↔ 𝑥 ∈ {𝑦})) | |
3 | velsn 3635 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦} ↔ 𝑥 = 𝑦) | |
4 | 3 | bibi2i 227 | . . . . 5 ⊢ ((𝜑 ↔ 𝑥 ∈ {𝑦}) ↔ (𝜑 ↔ 𝑥 = 𝑦)) |
5 | 4 | albii 1481 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 ∈ {𝑦}) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
6 | 2, 5 | bitri 184 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
7 | 6 | exbii 1616 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
8 | 1, 7 | bitr4i 187 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1503 ∃!weu 2042 ∈ wcel 2164 {cab 2179 {csn 3618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-sn 3624 |
This theorem is referenced by: euabsn 3688 reusn 3689 absneu 3690 uniintabim 3907 euabex 4254 nfvres 5588 eusvobj2 5904 |
Copyright terms: Public domain | W3C validator |