ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemab GIF version

Theorem acexmidlemab 5894
Description: Lemma for acexmid 5899. (Contributed by Jim Kingdon, 6-Aug-2019.)
Hypotheses
Ref Expression
acexmidlem.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
acexmidlem.b 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
acexmidlem.c 𝐶 = {𝐴, 𝐵}
Assertion
Ref Expression
acexmidlemab (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}) → ¬ 𝜑)
Distinct variable groups:   𝑥,𝑦,𝑣,𝑢,𝐴   𝑥,𝐵,𝑦,𝑣,𝑢   𝑥,𝐶,𝑦,𝑣,𝑢   𝜑,𝑥,𝑦,𝑣,𝑢

Proof of Theorem acexmidlemab
StepHypRef Expression
1 noel 3441 . . . 4 ¬ ∅ ∈ ∅
2 0ex 4148 . . . . . 6 ∅ ∈ V
32snid 3641 . . . . 5 ∅ ∈ {∅}
4 eleq2 2253 . . . . 5 (∅ = {∅} → (∅ ∈ ∅ ↔ ∅ ∈ {∅}))
53, 4mpbiri 168 . . . 4 (∅ = {∅} → ∅ ∈ ∅)
61, 5mto 663 . . 3 ¬ ∅ = {∅}
7 acexmidlem.a . . . . . . . . . 10 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
8 acexmidlem.b . . . . . . . . . 10 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
9 acexmidlem.c . . . . . . . . . 10 𝐶 = {𝐴, 𝐵}
107, 8, 9acexmidlemph 5893 . . . . . . . . 9 (𝜑𝐴 = 𝐵)
11 id 19 . . . . . . . . . 10 (𝐴 = 𝐵𝐴 = 𝐵)
12 eleq1 2252 . . . . . . . . . . . 12 (𝐴 = 𝐵 → (𝐴𝑢𝐵𝑢))
1312anbi1d 465 . . . . . . . . . . 11 (𝐴 = 𝐵 → ((𝐴𝑢𝑣𝑢) ↔ (𝐵𝑢𝑣𝑢)))
1413rexbidv 2491 . . . . . . . . . 10 (𝐴 = 𝐵 → (∃𝑢𝑦 (𝐴𝑢𝑣𝑢) ↔ ∃𝑢𝑦 (𝐵𝑢𝑣𝑢)))
1511, 14riotaeqbidv 5858 . . . . . . . . 9 (𝐴 = 𝐵 → (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)))
1610, 15syl 14 . . . . . . . 8 (𝜑 → (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)))
1716eqeq1d 2198 . . . . . . 7 (𝜑 → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ↔ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅))
1817biimpa 296 . . . . . 6 ((𝜑 ∧ (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅) → (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅)
1918adantrr 479 . . . . 5 ((𝜑 ∧ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) → (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅)
20 simprr 531 . . . . 5 ((𝜑 ∧ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) → (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})
2119, 20eqtr3d 2224 . . . 4 ((𝜑 ∧ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) → ∅ = {∅})
2221ex 115 . . 3 (𝜑 → (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}) → ∅ = {∅}))
236, 22mtoi 665 . 2 (𝜑 → ¬ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))
2423con2i 628 1 (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}) → ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709   = wceq 1364  wcel 2160  wrex 2469  {crab 2472  c0 3437  {csn 3610  {cpr 3611  crio 5854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-nul 4147
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-nul 3438  df-sn 3616  df-uni 3828  df-iota 5199  df-riota 5855
This theorem is referenced by:  acexmidlem1  5896
  Copyright terms: Public domain W3C validator