Proof of Theorem acexmidlemab
Step | Hyp | Ref
| Expression |
1 | | noel 3418 |
. . . 4
⊢ ¬
∅ ∈ ∅ |
2 | | 0ex 4116 |
. . . . . 6
⊢ ∅
∈ V |
3 | 2 | snid 3614 |
. . . . 5
⊢ ∅
∈ {∅} |
4 | | eleq2 2234 |
. . . . 5
⊢ (∅
= {∅} → (∅ ∈ ∅ ↔ ∅ ∈
{∅})) |
5 | 3, 4 | mpbiri 167 |
. . . 4
⊢ (∅
= {∅} → ∅ ∈ ∅) |
6 | 1, 5 | mto 657 |
. . 3
⊢ ¬
∅ = {∅} |
7 | | acexmidlem.a |
. . . . . . . . . 10
⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} |
8 | | acexmidlem.b |
. . . . . . . . . 10
⊢ 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} |
9 | | acexmidlem.c |
. . . . . . . . . 10
⊢ 𝐶 = {𝐴, 𝐵} |
10 | 7, 8, 9 | acexmidlemph 5846 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 = 𝐵) |
11 | | id 19 |
. . . . . . . . . 10
⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) |
12 | | eleq1 2233 |
. . . . . . . . . . . 12
⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝑢 ↔ 𝐵 ∈ 𝑢)) |
13 | 12 | anbi1d 462 |
. . . . . . . . . . 11
⊢ (𝐴 = 𝐵 → ((𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) ↔ (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢))) |
14 | 13 | rexbidv 2471 |
. . . . . . . . . 10
⊢ (𝐴 = 𝐵 → (∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) ↔ ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢))) |
15 | 11, 14 | riotaeqbidv 5812 |
. . . . . . . . 9
⊢ (𝐴 = 𝐵 → (℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢))) |
16 | 10, 15 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢))) |
17 | 16 | eqeq1d 2179 |
. . . . . . 7
⊢ (𝜑 → ((℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅ ↔ (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅)) |
18 | 17 | biimpa 294 |
. . . . . 6
⊢ ((𝜑 ∧ (℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅) → (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅) |
19 | 18 | adantrr 476 |
. . . . 5
⊢ ((𝜑 ∧ ((℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅ ∧ (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = {∅})) → (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅) |
20 | | simprr 527 |
. . . . 5
⊢ ((𝜑 ∧ ((℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅ ∧ (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = {∅})) → (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = {∅}) |
21 | 19, 20 | eqtr3d 2205 |
. . . 4
⊢ ((𝜑 ∧ ((℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅ ∧ (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = {∅})) → ∅ =
{∅}) |
22 | 21 | ex 114 |
. . 3
⊢ (𝜑 → (((℩𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅ ∧ (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = {∅}) → ∅ =
{∅})) |
23 | 6, 22 | mtoi 659 |
. 2
⊢ (𝜑 → ¬
((℩𝑣 ∈
𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅ ∧ (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = {∅})) |
24 | 23 | con2i 622 |
1
⊢
(((℩𝑣
∈ 𝐴 ∃𝑢 ∈ 𝑦 (𝐴 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = ∅ ∧ (℩𝑣 ∈ 𝐵 ∃𝑢 ∈ 𝑦 (𝐵 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) = {∅}) → ¬ 𝜑) |