Step | Hyp | Ref
| Expression |
1 | | 19.8a 1578 |
. . 3
⊢ (𝑥 = 𝐴 → ∃𝑥 𝑥 = 𝐴) |
2 | | isset 2732 |
. . 3
⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
3 | 1, 2 | sylibr 133 |
. 2
⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
4 | | eqeq2 2175 |
. . . 4
⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) |
5 | 4 | anbi1d 461 |
. . . . . 6
⊢ (𝑦 = 𝐴 → ((𝑥 = 𝑦 ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ 𝜑))) |
6 | 5 | exbidv 1813 |
. . . . 5
⊢ (𝑦 = 𝐴 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
7 | 6 | bibi2d 231 |
. . . 4
⊢ (𝑦 = 𝐴 → ((𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ (𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)))) |
8 | 4, 7 | imbi12d 233 |
. . 3
⊢ (𝑦 = 𝐴 → ((𝑥 = 𝑦 → (𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) ↔ (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))))) |
9 | | 19.8a 1578 |
. . . . 5
⊢ ((𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
10 | 9 | ex 114 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
11 | | vex 2729 |
. . . . . 6
⊢ 𝑦 ∈ V |
12 | 11 | alexeq 2852 |
. . . . 5
⊢
(∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
13 | | sp 1499 |
. . . . . 6
⊢
(∀𝑥(𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜑)) |
14 | 13 | com12 30 |
. . . . 5
⊢ (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦 → 𝜑) → 𝜑)) |
15 | 12, 14 | syl5bir 152 |
. . . 4
⊢ (𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → 𝜑)) |
16 | 10, 15 | impbid 128 |
. . 3
⊢ (𝑥 = 𝑦 → (𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
17 | 8, 16 | vtoclg 2786 |
. 2
⊢ (𝐴 ∈ V → (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)))) |
18 | 3, 17 | mpcom 36 |
1
⊢ (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |