| Step | Hyp | Ref
| Expression |
| 1 | | 19.8a 1604 |
. . 3
⊢ (𝑥 = 𝐴 → ∃𝑥 𝑥 = 𝐴) |
| 2 | | isset 2769 |
. . 3
⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
| 3 | 1, 2 | sylibr 134 |
. 2
⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
| 4 | | eqeq2 2206 |
. . . 4
⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) |
| 5 | 4 | anbi1d 465 |
. . . . . 6
⊢ (𝑦 = 𝐴 → ((𝑥 = 𝑦 ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ 𝜑))) |
| 6 | 5 | exbidv 1839 |
. . . . 5
⊢ (𝑦 = 𝐴 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
| 7 | 6 | bibi2d 232 |
. . . 4
⊢ (𝑦 = 𝐴 → ((𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ (𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)))) |
| 8 | 4, 7 | imbi12d 234 |
. . 3
⊢ (𝑦 = 𝐴 → ((𝑥 = 𝑦 → (𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) ↔ (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))))) |
| 9 | | 19.8a 1604 |
. . . . 5
⊢ ((𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| 10 | 9 | ex 115 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
| 11 | | vex 2766 |
. . . . . 6
⊢ 𝑦 ∈ V |
| 12 | 11 | alexeq 2890 |
. . . . 5
⊢
(∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| 13 | | sp 1525 |
. . . . . 6
⊢
(∀𝑥(𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜑)) |
| 14 | 13 | com12 30 |
. . . . 5
⊢ (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦 → 𝜑) → 𝜑)) |
| 15 | 12, 14 | biimtrrid 153 |
. . . 4
⊢ (𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → 𝜑)) |
| 16 | 10, 15 | impbid 129 |
. . 3
⊢ (𝑥 = 𝑦 → (𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
| 17 | 8, 16 | vtoclg 2824 |
. 2
⊢ (𝐴 ∈ V → (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)))) |
| 18 | 3, 17 | mpcom 36 |
1
⊢ (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |