ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpin GIF version

Theorem ixpin 6868
Description: The intersection of two infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.)
Assertion
Ref Expression
ixpin X𝑥𝐴 (𝐵𝐶) = (X𝑥𝐴 𝐵X𝑥𝐴 𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem ixpin
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 anandi 592 . . . 4 ((𝑓 Fn 𝐴 ∧ (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)) ↔ ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ∧ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)))
2 elin 3387 . . . . . . 7 ((𝑓𝑥) ∈ (𝐵𝐶) ↔ ((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ∈ 𝐶))
32ralbii 2536 . . . . . 6 (∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶) ↔ ∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ∈ 𝐶))
4 r19.26 2657 . . . . . 6 (∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ∈ 𝐶) ↔ (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
53, 4bitri 184 . . . . 5 (∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶) ↔ (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
65anbi2i 457 . . . 4 ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶)) ↔ (𝑓 Fn 𝐴 ∧ (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)))
7 vex 2802 . . . . . 6 𝑓 ∈ V
87elixp 6850 . . . . 5 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
97elixp 6850 . . . . 5 (𝑓X𝑥𝐴 𝐶 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
108, 9anbi12i 460 . . . 4 ((𝑓X𝑥𝐴 𝐵𝑓X𝑥𝐴 𝐶) ↔ ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ∧ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)))
111, 6, 103bitr4i 212 . . 3 ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶)) ↔ (𝑓X𝑥𝐴 𝐵𝑓X𝑥𝐴 𝐶))
127elixp 6850 . . 3 (𝑓X𝑥𝐴 (𝐵𝐶) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶)))
13 elin 3387 . . 3 (𝑓 ∈ (X𝑥𝐴 𝐵X𝑥𝐴 𝐶) ↔ (𝑓X𝑥𝐴 𝐵𝑓X𝑥𝐴 𝐶))
1411, 12, 133bitr4i 212 . 2 (𝑓X𝑥𝐴 (𝐵𝐶) ↔ 𝑓 ∈ (X𝑥𝐴 𝐵X𝑥𝐴 𝐶))
1514eqriv 2226 1 X𝑥𝐴 (𝐵𝐶) = (X𝑥𝐴 𝐵X𝑥𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wcel 2200  wral 2508  cin 3196   Fn wfn 5312  cfv 5317  Xcixp 6843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ixp 6844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator