ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpin GIF version

Theorem ixpin 6689
Description: The intersection of two infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.)
Assertion
Ref Expression
ixpin X𝑥𝐴 (𝐵𝐶) = (X𝑥𝐴 𝐵X𝑥𝐴 𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem ixpin
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 anandi 580 . . . 4 ((𝑓 Fn 𝐴 ∧ (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)) ↔ ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ∧ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)))
2 elin 3305 . . . . . . 7 ((𝑓𝑥) ∈ (𝐵𝐶) ↔ ((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ∈ 𝐶))
32ralbii 2472 . . . . . 6 (∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶) ↔ ∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ∈ 𝐶))
4 r19.26 2592 . . . . . 6 (∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ∈ 𝐶) ↔ (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
53, 4bitri 183 . . . . 5 (∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶) ↔ (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
65anbi2i 453 . . . 4 ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶)) ↔ (𝑓 Fn 𝐴 ∧ (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)))
7 vex 2729 . . . . . 6 𝑓 ∈ V
87elixp 6671 . . . . 5 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
97elixp 6671 . . . . 5 (𝑓X𝑥𝐴 𝐶 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
108, 9anbi12i 456 . . . 4 ((𝑓X𝑥𝐴 𝐵𝑓X𝑥𝐴 𝐶) ↔ ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ∧ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)))
111, 6, 103bitr4i 211 . . 3 ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶)) ↔ (𝑓X𝑥𝐴 𝐵𝑓X𝑥𝐴 𝐶))
127elixp 6671 . . 3 (𝑓X𝑥𝐴 (𝐵𝐶) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶)))
13 elin 3305 . . 3 (𝑓 ∈ (X𝑥𝐴 𝐵X𝑥𝐴 𝐶) ↔ (𝑓X𝑥𝐴 𝐵𝑓X𝑥𝐴 𝐶))
1411, 12, 133bitr4i 211 . 2 (𝑓X𝑥𝐴 (𝐵𝐶) ↔ 𝑓 ∈ (X𝑥𝐴 𝐵X𝑥𝐴 𝐶))
1514eqriv 2162 1 X𝑥𝐴 (𝐵𝐶) = (X𝑥𝐴 𝐵X𝑥𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  wcel 2136  wral 2444  cin 3115   Fn wfn 5183  cfv 5188  Xcixp 6664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-ixp 6665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator