ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bldisj GIF version

Theorem bldisj 12570
Description: Two balls are disjoint if the center-to-center distance is more than the sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.)
Assertion
Ref Expression
bldisj (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) = ∅)

Proof of Theorem bldisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr3 989 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))
2 simpr1 987 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → 𝑅 ∈ ℝ*)
3 simpr2 988 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → 𝑆 ∈ ℝ*)
42, 3xaddcld 9667 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑅 +𝑒 𝑆) ∈ ℝ*)
5 xmetcl 12521 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) → (𝑃𝐷𝑄) ∈ ℝ*)
65adantr 274 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑃𝐷𝑄) ∈ ℝ*)
7 xrlenlt 7829 . . . . 5 (((𝑅 +𝑒 𝑆) ∈ ℝ* ∧ (𝑃𝐷𝑄) ∈ ℝ*) → ((𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄) ↔ ¬ (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
84, 6, 7syl2anc 408 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄) ↔ ¬ (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
91, 8mpbid 146 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ¬ (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆))
10 elin 3259 . . . 4 (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) ↔ (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑄(ball‘𝐷)𝑆)))
11 simpl1 984 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → 𝐷 ∈ (∞Met‘𝑋))
12 simpl2 985 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → 𝑃𝑋)
13 elbl 12560 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
1411, 12, 2, 13syl3anc 1216 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
15 simpl3 986 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → 𝑄𝑋)
16 elbl 12560 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄𝑋𝑆 ∈ ℝ*) → (𝑥 ∈ (𝑄(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆)))
1711, 15, 3, 16syl3anc 1216 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑥 ∈ (𝑄(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆)))
1814, 17anbi12d 464 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑄(ball‘𝐷)𝑆)) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆))))
19 anandi 579 . . . . . 6 ((𝑥𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆)) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆)))
2018, 19syl6bbr 197 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑄(ball‘𝐷)𝑆)) ↔ (𝑥𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆))))
2111adantr 274 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2212adantr 274 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝑃𝑋)
23 simpr 109 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝑥𝑋)
24 xmetcl 12521 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
2521, 22, 23, 24syl3anc 1216 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
2615adantr 274 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝑄𝑋)
27 xmetcl 12521 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄𝑋𝑥𝑋) → (𝑄𝐷𝑥) ∈ ℝ*)
2821, 26, 23, 27syl3anc 1216 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (𝑄𝐷𝑥) ∈ ℝ*)
292adantr 274 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ*)
303adantr 274 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝑆 ∈ ℝ*)
31 xlt2add 9663 . . . . . . . 8 ((((𝑃𝐷𝑥) ∈ ℝ* ∧ (𝑄𝐷𝑥) ∈ ℝ*) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → (((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆) → ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) < (𝑅 +𝑒 𝑆)))
3225, 28, 29, 30, 31syl22anc 1217 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆) → ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) < (𝑅 +𝑒 𝑆)))
33 xmettri3 12543 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑃𝑋𝑄𝑋𝑥𝑋)) → (𝑃𝐷𝑄) ≤ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)))
3421, 22, 26, 23, 33syl13anc 1218 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (𝑃𝐷𝑄) ≤ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)))
356adantr 274 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (𝑃𝐷𝑄) ∈ ℝ*)
3625, 28xaddcld 9667 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) ∈ ℝ*)
374adantr 274 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (𝑅 +𝑒 𝑆) ∈ ℝ*)
38 xrlelttr 9589 . . . . . . . . 9 (((𝑃𝐷𝑄) ∈ ℝ* ∧ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ∈ ℝ*) → (((𝑃𝐷𝑄) ≤ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) ∧ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) < (𝑅 +𝑒 𝑆)) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
3935, 36, 37, 38syl3anc 1216 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (((𝑃𝐷𝑄) ≤ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) ∧ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) < (𝑅 +𝑒 𝑆)) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
4034, 39mpand 425 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) < (𝑅 +𝑒 𝑆) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
4132, 40syld 45 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
4241expimpd 360 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑥𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆)) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
4320, 42sylbid 149 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑄(ball‘𝐷)𝑆)) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
4410, 43syl5bi 151 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
459, 44mtod 652 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ¬ 𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)))
4645eq0rdv 3407 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  cin 3070  c0 3363   class class class wbr 3929  cfv 5123  (class class class)co 5774  *cxr 7799   < clt 7800  cle 7801   +𝑒 cxad 9557  ∞Metcxmet 12149  ballcbl 12151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-i2m1 7725  ax-0id 7728  ax-rnegex 7729  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-xadd 9560  df-psmet 12156  df-xmet 12157  df-bl 12159
This theorem is referenced by:  bl2in  12572
  Copyright terms: Public domain W3C validator