Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  bldisj GIF version

Theorem bldisj 12772
 Description: Two balls are disjoint if the center-to-center distance is more than the sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.)
Assertion
Ref Expression
bldisj (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) = ∅)

Proof of Theorem bldisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr3 990 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))
2 simpr1 988 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → 𝑅 ∈ ℝ*)
3 simpr2 989 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → 𝑆 ∈ ℝ*)
42, 3xaddcld 9781 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑅 +𝑒 𝑆) ∈ ℝ*)
5 xmetcl 12723 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) → (𝑃𝐷𝑄) ∈ ℝ*)
65adantr 274 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑃𝐷𝑄) ∈ ℝ*)
7 xrlenlt 7936 . . . . 5 (((𝑅 +𝑒 𝑆) ∈ ℝ* ∧ (𝑃𝐷𝑄) ∈ ℝ*) → ((𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄) ↔ ¬ (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
84, 6, 7syl2anc 409 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄) ↔ ¬ (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
91, 8mpbid 146 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ¬ (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆))
10 elin 3290 . . . 4 (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) ↔ (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑄(ball‘𝐷)𝑆)))
11 simpl1 985 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → 𝐷 ∈ (∞Met‘𝑋))
12 simpl2 986 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → 𝑃𝑋)
13 elbl 12762 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
1411, 12, 2, 13syl3anc 1220 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
15 simpl3 987 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → 𝑄𝑋)
16 elbl 12762 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄𝑋𝑆 ∈ ℝ*) → (𝑥 ∈ (𝑄(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆)))
1711, 15, 3, 16syl3anc 1220 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑥 ∈ (𝑄(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆)))
1814, 17anbi12d 465 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑄(ball‘𝐷)𝑆)) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆))))
19 anandi 580 . . . . . 6 ((𝑥𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆)) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆)))
2018, 19bitr4di 197 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑄(ball‘𝐷)𝑆)) ↔ (𝑥𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆))))
2111adantr 274 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2212adantr 274 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝑃𝑋)
23 simpr 109 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝑥𝑋)
24 xmetcl 12723 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
2521, 22, 23, 24syl3anc 1220 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
2615adantr 274 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝑄𝑋)
27 xmetcl 12723 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄𝑋𝑥𝑋) → (𝑄𝐷𝑥) ∈ ℝ*)
2821, 26, 23, 27syl3anc 1220 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (𝑄𝐷𝑥) ∈ ℝ*)
292adantr 274 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ*)
303adantr 274 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝑆 ∈ ℝ*)
31 xlt2add 9777 . . . . . . . 8 ((((𝑃𝐷𝑥) ∈ ℝ* ∧ (𝑄𝐷𝑥) ∈ ℝ*) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → (((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆) → ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) < (𝑅 +𝑒 𝑆)))
3225, 28, 29, 30, 31syl22anc 1221 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆) → ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) < (𝑅 +𝑒 𝑆)))
33 xmettri3 12745 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑃𝑋𝑄𝑋𝑥𝑋)) → (𝑃𝐷𝑄) ≤ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)))
3421, 22, 26, 23, 33syl13anc 1222 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (𝑃𝐷𝑄) ≤ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)))
356adantr 274 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (𝑃𝐷𝑄) ∈ ℝ*)
3625, 28xaddcld 9781 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) ∈ ℝ*)
374adantr 274 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (𝑅 +𝑒 𝑆) ∈ ℝ*)
38 xrlelttr 9703 . . . . . . . . 9 (((𝑃𝐷𝑄) ∈ ℝ* ∧ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ∈ ℝ*) → (((𝑃𝐷𝑄) ≤ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) ∧ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) < (𝑅 +𝑒 𝑆)) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
3935, 36, 37, 38syl3anc 1220 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (((𝑃𝐷𝑄) ≤ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) ∧ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) < (𝑅 +𝑒 𝑆)) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
4034, 39mpand 426 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) < (𝑅 +𝑒 𝑆) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
4132, 40syld 45 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
4241expimpd 361 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑥𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆)) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
4320, 42sylbid 149 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑄(ball‘𝐷)𝑆)) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
4410, 43syl5bi 151 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
459, 44mtod 653 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ¬ 𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)))
4645eq0rdv 3438 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) = ∅)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   = wceq 1335   ∈ wcel 2128   ∩ cin 3101  ∅c0 3394   class class class wbr 3965  ‘cfv 5169  (class class class)co 5821  ℝ*cxr 7905   < clt 7906   ≤ cle 7907   +𝑒 cxad 9670  ∞Metcxmet 12351  ballcbl 12353 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-addcom 7826  ax-addass 7828  ax-i2m1 7831  ax-0id 7834  ax-rnegex 7835  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-po 4256  df-iso 4257  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-fv 5177  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-map 6592  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-xadd 9673  df-psmet 12358  df-xmet 12359  df-bl 12361 This theorem is referenced by:  bl2in  12774
 Copyright terms: Public domain W3C validator