ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difundi GIF version

Theorem difundi 3415
Description: Distributive law for class difference. Theorem 39 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difundi (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))

Proof of Theorem difundi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3166 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
2 eldif 3166 . . . 4 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐶))
31, 2anbi12i 460 . . 3 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥 ∈ (𝐴𝐶)) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐶)))
4 elin 3346 . . 3 (𝑥 ∈ ((𝐴𝐵) ∩ (𝐴𝐶)) ↔ (𝑥 ∈ (𝐴𝐵) ∧ 𝑥 ∈ (𝐴𝐶)))
5 eldif 3166 . . . . . 6 (𝑥 ∈ (𝐴 ∖ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐵𝐶)))
6 elun 3304 . . . . . . . 8 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
76notbii 669 . . . . . . 7 𝑥 ∈ (𝐵𝐶) ↔ ¬ (𝑥𝐵𝑥𝐶))
87anbi2i 457 . . . . . 6 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ ¬ (𝑥𝐵𝑥𝐶)))
95, 8bitri 184 . . . . 5 (𝑥 ∈ (𝐴 ∖ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ ¬ (𝑥𝐵𝑥𝐶)))
10 ioran 753 . . . . . 6 (¬ (𝑥𝐵𝑥𝐶) ↔ (¬ 𝑥𝐵 ∧ ¬ 𝑥𝐶))
1110anbi2i 457 . . . . 5 ((𝑥𝐴 ∧ ¬ (𝑥𝐵𝑥𝐶)) ↔ (𝑥𝐴 ∧ (¬ 𝑥𝐵 ∧ ¬ 𝑥𝐶)))
129, 11bitri 184 . . . 4 (𝑥 ∈ (𝐴 ∖ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (¬ 𝑥𝐵 ∧ ¬ 𝑥𝐶)))
13 anandi 590 . . . 4 ((𝑥𝐴 ∧ (¬ 𝑥𝐵 ∧ ¬ 𝑥𝐶)) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐶)))
1412, 13bitri 184 . . 3 (𝑥 ∈ (𝐴 ∖ (𝐵𝐶)) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐶)))
153, 4, 143bitr4ri 213 . 2 (𝑥 ∈ (𝐴 ∖ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∩ (𝐴𝐶)))
1615eqriv 2193 1 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wo 709   = wceq 1364  wcel 2167  cdif 3154  cun 3155  cin 3156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-in 3163
This theorem is referenced by:  undm  3421  undifdc  6985  uncld  14349
  Copyright terms: Public domain W3C validator