![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > blininf | GIF version |
Description: The intersection of two balls with the same center is the smaller of them. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
Ref | Expression |
---|---|
blininf | ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*)) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) = (𝑃(ball‘𝐷)inf({𝑅, 𝑆}, ℝ*, < ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetcl 14531 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑃𝐷𝑥) ∈ ℝ*) | |
2 | 1 | 3expa 1205 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑃𝐷𝑥) ∈ ℝ*) |
3 | 2 | adantlr 477 | . . . . 5 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑋) → (𝑃𝐷𝑥) ∈ ℝ*) |
4 | simplrl 535 | . . . . 5 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑋) → 𝑅 ∈ ℝ*) | |
5 | simplrr 536 | . . . . 5 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑋) → 𝑆 ∈ ℝ*) | |
6 | xrltmininf 11416 | . . . . 5 ⊢ (((𝑃𝐷𝑥) ∈ ℝ* ∧ 𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) → ((𝑃𝐷𝑥) < inf({𝑅, 𝑆}, ℝ*, < ) ↔ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆))) | |
7 | 3, 4, 5, 6 | syl3anc 1249 | . . . 4 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑋) → ((𝑃𝐷𝑥) < inf({𝑅, 𝑆}, ℝ*, < ) ↔ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆))) |
8 | 7 | pm5.32da 452 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*)) → ((𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < inf({𝑅, 𝑆}, ℝ*, < )) ↔ (𝑥 ∈ 𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆)))) |
9 | xrmincl 11412 | . . . 4 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) → inf({𝑅, 𝑆}, ℝ*, < ) ∈ ℝ*) | |
10 | elbl 14570 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ inf({𝑅, 𝑆}, ℝ*, < ) ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)inf({𝑅, 𝑆}, ℝ*, < )) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < inf({𝑅, 𝑆}, ℝ*, < )))) | |
11 | 10 | 3expa 1205 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ inf({𝑅, 𝑆}, ℝ*, < ) ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)inf({𝑅, 𝑆}, ℝ*, < )) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < inf({𝑅, 𝑆}, ℝ*, < )))) |
12 | 9, 11 | sylan2 286 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*)) → (𝑥 ∈ (𝑃(ball‘𝐷)inf({𝑅, 𝑆}, ℝ*, < )) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < inf({𝑅, 𝑆}, ℝ*, < )))) |
13 | elbl 14570 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) | |
14 | 13 | 3expa 1205 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) |
15 | 14 | adantrr 479 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*)) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) |
16 | elbl 14570 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑆) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑆))) | |
17 | 16 | 3expa 1205 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑆 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑆) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑆))) |
18 | 17 | adantrl 478 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*)) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑆) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑆))) |
19 | 15, 18 | anbi12d 473 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*)) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑆)) ↔ ((𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑆)))) |
20 | elin 3343 | . . . 4 ⊢ (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) ↔ (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑆))) | |
21 | anandi 590 | . . . 4 ⊢ ((𝑥 ∈ 𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆)) ↔ ((𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑆))) | |
22 | 19, 20, 21 | 3bitr4g 223 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*)) → (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) ↔ (𝑥 ∈ 𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆)))) |
23 | 8, 12, 22 | 3bitr4rd 221 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*)) → (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) ↔ 𝑥 ∈ (𝑃(ball‘𝐷)inf({𝑅, 𝑆}, ℝ*, < )))) |
24 | 23 | eqrdv 2191 | 1 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*)) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) = (𝑃(ball‘𝐷)inf({𝑅, 𝑆}, ℝ*, < ))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∩ cin 3153 {cpr 3620 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 infcinf 7044 ℝ*cxr 8055 < clt 8056 ∞Metcxmet 14035 ballcbl 14037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-map 6706 df-sup 7045 df-inf 7046 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-rp 9723 df-xneg 9841 df-seqfrec 10522 df-exp 10613 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-psmet 14042 df-xmet 14043 df-bl 14045 |
This theorem is referenced by: blin2 14611 |
Copyright terms: Public domain | W3C validator |