ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blininf GIF version

Theorem blininf 14660
Description: The intersection of two balls with the same center is the smaller of them. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blininf (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) = (𝑃(ball‘𝐷)inf({𝑅, 𝑆}, ℝ*, < )))

Proof of Theorem blininf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xmetcl 14588 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
213expa 1205 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
32adantlr 477 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) ∧ 𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
4 simplrl 535 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ*)
5 simplrr 536 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) ∧ 𝑥𝑋) → 𝑆 ∈ ℝ*)
6 xrltmininf 11435 . . . . 5 (((𝑃𝐷𝑥) ∈ ℝ*𝑅 ∈ ℝ*𝑆 ∈ ℝ*) → ((𝑃𝐷𝑥) < inf({𝑅, 𝑆}, ℝ*, < ) ↔ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆)))
73, 4, 5, 6syl3anc 1249 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) < inf({𝑅, 𝑆}, ℝ*, < ) ↔ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆)))
87pm5.32da 452 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < inf({𝑅, 𝑆}, ℝ*, < )) ↔ (𝑥𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆))))
9 xrmincl 11431 . . . 4 ((𝑅 ∈ ℝ*𝑆 ∈ ℝ*) → inf({𝑅, 𝑆}, ℝ*, < ) ∈ ℝ*)
10 elbl 14627 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ inf({𝑅, 𝑆}, ℝ*, < ) ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)inf({𝑅, 𝑆}, ℝ*, < )) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < inf({𝑅, 𝑆}, ℝ*, < ))))
11103expa 1205 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ inf({𝑅, 𝑆}, ℝ*, < ) ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)inf({𝑅, 𝑆}, ℝ*, < )) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < inf({𝑅, 𝑆}, ℝ*, < ))))
129, 11sylan2 286 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → (𝑥 ∈ (𝑃(ball‘𝐷)inf({𝑅, 𝑆}, ℝ*, < )) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < inf({𝑅, 𝑆}, ℝ*, < ))))
13 elbl 14627 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
14133expa 1205 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
1514adantrr 479 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
16 elbl 14627 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑆 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑆)))
17163expa 1205 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑆 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑆)))
1817adantrl 478 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑆)))
1915, 18anbi12d 473 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑆)) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑆))))
20 elin 3346 . . . 4 (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) ↔ (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑆)))
21 anandi 590 . . . 4 ((𝑥𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆)) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑆)))
2219, 20, 213bitr4g 223 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) ↔ (𝑥𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆))))
238, 12, 223bitr4rd 221 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) ↔ 𝑥 ∈ (𝑃(ball‘𝐷)inf({𝑅, 𝑆}, ℝ*, < ))))
2423eqrdv 2194 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) = (𝑃(ball‘𝐷)inf({𝑅, 𝑆}, ℝ*, < )))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  cin 3156  {cpr 3623   class class class wbr 4033  cfv 5258  (class class class)co 5922  infcinf 7049  *cxr 8060   < clt 8061  ∞Metcxmet 14092  ballcbl 14094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-xneg 9847  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-psmet 14099  df-xmet 14100  df-bl 14102
This theorem is referenced by:  blin2  14668
  Copyright terms: Public domain W3C validator