| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an42s | GIF version | ||
| Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| an41r3s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| an42s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an41r3s.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | an4s 590 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| 3 | 2 | ancom2s 566 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓)) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nnmsucr 6632 ecopoveq 6775 enqdc 7544 addcmpblnq 7550 addpipqqslem 7552 addpipqqs 7553 addclnq 7558 addcomnqg 7564 distrnqg 7570 recexnq 7573 ltdcnq 7580 ltexnqq 7591 enq0enq 7614 enq0sym 7615 enq0breq 7619 addclnq0 7634 distrnq0 7642 mulclsr 7937 axmulass 8056 axdistr 8057 subadd4 8386 mulsub 8543 mgmidmo 13400 tgcl 14732 |
| Copyright terms: Public domain | W3C validator |