ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an42s GIF version

Theorem an42s 589
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.)
Hypothesis
Ref Expression
an41r3s.1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
an42s (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)

Proof of Theorem an42s
StepHypRef Expression
1 an41r3s.1 . . 3 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
21an4s 588 . 2 (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)
32ancom2s 566 1 (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  nnmsucr  6573  ecopoveq  6716  enqdc  7473  addcmpblnq  7479  addpipqqslem  7481  addpipqqs  7482  addclnq  7487  addcomnqg  7493  distrnqg  7499  recexnq  7502  ltdcnq  7509  ltexnqq  7520  enq0enq  7543  enq0sym  7544  enq0breq  7548  addclnq0  7563  distrnq0  7571  mulclsr  7866  axmulass  7985  axdistr  7986  subadd4  8315  mulsub  8472  mgmidmo  13146  tgcl  14478
  Copyright terms: Public domain W3C validator