| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an42s | GIF version | ||
| Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| an41r3s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| an42s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an41r3s.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | an4s 588 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| 3 | 2 | ancom2s 566 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓)) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nnmsucr 6555 ecopoveq 6698 enqdc 7447 addcmpblnq 7453 addpipqqslem 7455 addpipqqs 7456 addclnq 7461 addcomnqg 7467 distrnqg 7473 recexnq 7476 ltdcnq 7483 ltexnqq 7494 enq0enq 7517 enq0sym 7518 enq0breq 7522 addclnq0 7537 distrnq0 7545 mulclsr 7840 axmulass 7959 axdistr 7960 subadd4 8289 mulsub 8446 mgmidmo 13076 tgcl 14408 |
| Copyright terms: Public domain | W3C validator |