![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > an42s | GIF version |
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
an41r3s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
an42s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an41r3s.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | an4s 588 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
3 | 2 | ancom2s 566 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓)) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: nnmsucr 6541 ecopoveq 6684 enqdc 7421 addcmpblnq 7427 addpipqqslem 7429 addpipqqs 7430 addclnq 7435 addcomnqg 7441 distrnqg 7447 recexnq 7450 ltdcnq 7457 ltexnqq 7468 enq0enq 7491 enq0sym 7492 enq0breq 7496 addclnq0 7511 distrnq0 7519 mulclsr 7814 axmulass 7933 axdistr 7934 subadd4 8263 mulsub 8420 mgmidmo 12955 tgcl 14232 |
Copyright terms: Public domain | W3C validator |