| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an42s | GIF version | ||
| Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| an41r3s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| an42s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an41r3s.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | an4s 588 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| 3 | 2 | ancom2s 566 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓)) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nnmsucr 6587 ecopoveq 6730 enqdc 7494 addcmpblnq 7500 addpipqqslem 7502 addpipqqs 7503 addclnq 7508 addcomnqg 7514 distrnqg 7520 recexnq 7523 ltdcnq 7530 ltexnqq 7541 enq0enq 7564 enq0sym 7565 enq0breq 7569 addclnq0 7584 distrnq0 7592 mulclsr 7887 axmulass 8006 axdistr 8007 subadd4 8336 mulsub 8493 mgmidmo 13279 tgcl 14611 |
| Copyright terms: Public domain | W3C validator |