Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > an42s | GIF version |
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
an41r3s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
an42s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an41r3s.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | an4s 583 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
3 | 2 | ancom2s 561 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓)) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: nnmsucr 6465 ecopoveq 6605 enqdc 7312 addcmpblnq 7318 addpipqqslem 7320 addpipqqs 7321 addclnq 7326 addcomnqg 7332 distrnqg 7338 recexnq 7341 ltdcnq 7348 ltexnqq 7359 enq0enq 7382 enq0sym 7383 enq0breq 7387 addclnq0 7402 distrnq0 7410 mulclsr 7705 axmulass 7824 axdistr 7825 subadd4 8152 mulsub 8309 mgmidmo 12615 tgcl 12819 |
Copyright terms: Public domain | W3C validator |