ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an42s GIF version

Theorem an42s 589
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.)
Hypothesis
Ref Expression
an41r3s.1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
an42s (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)

Proof of Theorem an42s
StepHypRef Expression
1 an41r3s.1 . . 3 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
21an4s 588 . 2 (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)
32ancom2s 566 1 (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  nnmsucr  6546  ecopoveq  6689  enqdc  7428  addcmpblnq  7434  addpipqqslem  7436  addpipqqs  7437  addclnq  7442  addcomnqg  7448  distrnqg  7454  recexnq  7457  ltdcnq  7464  ltexnqq  7475  enq0enq  7498  enq0sym  7499  enq0breq  7503  addclnq0  7518  distrnq0  7526  mulclsr  7821  axmulass  7940  axdistr  7941  subadd4  8270  mulsub  8427  mgmidmo  13015  tgcl  14300
  Copyright terms: Public domain W3C validator