ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an42s GIF version

Theorem an42s 589
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.)
Hypothesis
Ref Expression
an41r3s.1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
an42s (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)

Proof of Theorem an42s
StepHypRef Expression
1 an41r3s.1 . . 3 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
21an4s 588 . 2 (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)
32ancom2s 566 1 (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  nnmsucr  6555  ecopoveq  6698  enqdc  7447  addcmpblnq  7453  addpipqqslem  7455  addpipqqs  7456  addclnq  7461  addcomnqg  7467  distrnqg  7473  recexnq  7476  ltdcnq  7483  ltexnqq  7494  enq0enq  7517  enq0sym  7518  enq0breq  7522  addclnq0  7537  distrnq0  7545  mulclsr  7840  axmulass  7959  axdistr  7960  subadd4  8289  mulsub  8446  mgmidmo  13076  tgcl  14408
  Copyright terms: Public domain W3C validator