ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an42s GIF version

Theorem an42s 589
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.)
Hypothesis
Ref Expression
an41r3s.1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
an42s (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)

Proof of Theorem an42s
StepHypRef Expression
1 an41r3s.1 . . 3 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
21an4s 588 . 2 (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)
32ancom2s 566 1 (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  nnmsucr  6564  ecopoveq  6707  enqdc  7456  addcmpblnq  7462  addpipqqslem  7464  addpipqqs  7465  addclnq  7470  addcomnqg  7476  distrnqg  7482  recexnq  7485  ltdcnq  7492  ltexnqq  7503  enq0enq  7526  enq0sym  7527  enq0breq  7531  addclnq0  7546  distrnq0  7554  mulclsr  7849  axmulass  7968  axdistr  7969  subadd4  8298  mulsub  8455  mgmidmo  13122  tgcl  14454
  Copyright terms: Public domain W3C validator