ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an42s GIF version

Theorem an42s 591
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.)
Hypothesis
Ref Expression
an41r3s.1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
an42s (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)

Proof of Theorem an42s
StepHypRef Expression
1 an41r3s.1 . . 3 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
21an4s 590 . 2 (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)
32ancom2s 566 1 (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  nnmsucr  6632  ecopoveq  6775  enqdc  7544  addcmpblnq  7550  addpipqqslem  7552  addpipqqs  7553  addclnq  7558  addcomnqg  7564  distrnqg  7570  recexnq  7573  ltdcnq  7580  ltexnqq  7591  enq0enq  7614  enq0sym  7615  enq0breq  7619  addclnq0  7634  distrnq0  7642  mulclsr  7937  axmulass  8056  axdistr  8057  subadd4  8386  mulsub  8543  mgmidmo  13400  tgcl  14732
  Copyright terms: Public domain W3C validator