ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an42s GIF version

Theorem an42s 589
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.)
Hypothesis
Ref Expression
an41r3s.1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
an42s (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)

Proof of Theorem an42s
StepHypRef Expression
1 an41r3s.1 . . 3 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
21an4s 588 . 2 (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)
32ancom2s 566 1 (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  nnmsucr  6555  ecopoveq  6698  enqdc  7445  addcmpblnq  7451  addpipqqslem  7453  addpipqqs  7454  addclnq  7459  addcomnqg  7465  distrnqg  7471  recexnq  7474  ltdcnq  7481  ltexnqq  7492  enq0enq  7515  enq0sym  7516  enq0breq  7520  addclnq0  7535  distrnq0  7543  mulclsr  7838  axmulass  7957  axdistr  7958  subadd4  8287  mulsub  8444  mgmidmo  13074  tgcl  14384
  Copyright terms: Public domain W3C validator