ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fndmin GIF version

Theorem fndmin 5666
Description: Two ways to express the locus of equality between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmin ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐴

Proof of Theorem fndmin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dffn5im 5603 . . . . . 6 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
2 df-mpt 4093 . . . . . 6 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
31, 2eqtrdi 2242 . . . . 5 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
4 dffn5im 5603 . . . . . 6 (𝐺 Fn 𝐴𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
5 df-mpt 4093 . . . . . 6 (𝑥𝐴 ↦ (𝐺𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))}
64, 5eqtrdi 2242 . . . . 5 (𝐺 Fn 𝐴𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))})
73, 6ineqan12d 3363 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹𝐺) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))}))
8 inopab 4795 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐺𝑥))}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))}
97, 8eqtrdi 2242 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹𝐺) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))})
109dmeqd 4865 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = dom {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))})
11 anandi 590 . . . . . . . 8 ((𝑥𝐴 ∧ (𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥))) ↔ ((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥))))
1211exbii 1616 . . . . . . 7 (∃𝑦(𝑥𝐴 ∧ (𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥))) ↔ ∃𝑦((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥))))
13 19.42v 1918 . . . . . . 7 (∃𝑦(𝑥𝐴 ∧ (𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥))) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥))))
1412, 13bitr3i 186 . . . . . 6 (∃𝑦((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥))) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥))))
15 funfvex 5572 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
16 eqeq1 2200 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) → (𝑦 = (𝐺𝑥) ↔ (𝐹𝑥) = (𝐺𝑥)))
1716ceqsexgv 2890 . . . . . . . . 9 ((𝐹𝑥) ∈ V → (∃𝑦(𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥)) ↔ (𝐹𝑥) = (𝐺𝑥)))
1815, 17syl 14 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (∃𝑦(𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥)) ↔ (𝐹𝑥) = (𝐺𝑥)))
1918funfni 5355 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (∃𝑦(𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥)) ↔ (𝐹𝑥) = (𝐺𝑥)))
2019pm5.32da 452 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴 ∧ ∃𝑦(𝑦 = (𝐹𝑥) ∧ 𝑦 = (𝐺𝑥))) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = (𝐺𝑥))))
2114, 20bitrid 192 . . . . 5 (𝐹 Fn 𝐴 → (∃𝑦((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥))) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = (𝐺𝑥))))
2221abbidv 2311 . . . 4 (𝐹 Fn 𝐴 → {𝑥 ∣ ∃𝑦((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))} = {𝑥 ∣ (𝑥𝐴 ∧ (𝐹𝑥) = (𝐺𝑥))})
23 dmopab 4874 . . . 4 dom {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))} = {𝑥 ∣ ∃𝑦((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))}
24 df-rab 2481 . . . 4 {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)} = {𝑥 ∣ (𝑥𝐴 ∧ (𝐹𝑥) = (𝐺𝑥))}
2522, 23, 243eqtr4g 2251 . . 3 (𝐹 Fn 𝐴 → dom {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))} = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)})
2625adantr 276 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = (𝐹𝑥)) ∧ (𝑥𝐴𝑦 = (𝐺𝑥)))} = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)})
2710, 26eqtrd 2226 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) = (𝐺𝑥)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  {cab 2179  {crab 2476  Vcvv 2760  cin 3153  {copab 4090  cmpt 4091  dom cdm 4660  Fun wfun 5249   Fn wfn 5250  cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263
This theorem is referenced by:  fneqeql  5667  mhmeql  13067  ghmeql  13340
  Copyright terms: Public domain W3C validator