Step | Hyp | Ref
| Expression |
1 | | dffn5im 5542 |
. . . . . 6
⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
2 | | df-mpt 4052 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} |
3 | 1, 2 | eqtrdi 2219 |
. . . . 5
⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
4 | | dffn5im 5542 |
. . . . . 6
⊢ (𝐺 Fn 𝐴 → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) |
5 | | df-mpt 4052 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))} |
6 | 4, 5 | eqtrdi 2219 |
. . . . 5
⊢ (𝐺 Fn 𝐴 → 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))}) |
7 | 3, 6 | ineqan12d 3330 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 ∩ 𝐺) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))})) |
8 | | inopab 4743 |
. . . 4
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))}) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} |
9 | 7, 8 | eqtrdi 2219 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 ∩ 𝐺) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))}) |
10 | 9 | dmeqd 4813 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∩ 𝐺) = dom {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))}) |
11 | | anandi 585 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥))) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))) |
12 | 11 | exbii 1598 |
. . . . . . 7
⊢
(∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥))) ↔ ∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))) |
13 | | 19.42v 1899 |
. . . . . . 7
⊢
(∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥))) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥)))) |
14 | 12, 13 | bitr3i 185 |
. . . . . 6
⊢
(∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥)))) |
15 | | funfvex 5513 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) |
16 | | eqeq1 2177 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐹‘𝑥) → (𝑦 = (𝐺‘𝑥) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
17 | 16 | ceqsexgv 2859 |
. . . . . . . . 9
⊢ ((𝐹‘𝑥) ∈ V → (∃𝑦(𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥)) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
18 | 15, 17 | syl 14 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ dom 𝐹) → (∃𝑦(𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥)) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
19 | 18 | funfni 5298 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (∃𝑦(𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥)) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
20 | 19 | pm5.32da 449 |
. . . . . 6
⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥))) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐺‘𝑥)))) |
21 | 14, 20 | syl5bb 191 |
. . . . 5
⊢ (𝐹 Fn 𝐴 → (∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐺‘𝑥)))) |
22 | 21 | abbidv 2288 |
. . . 4
⊢ (𝐹 Fn 𝐴 → {𝑥 ∣ ∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))}) |
23 | | dmopab 4822 |
. . . 4
⊢ dom
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} = {𝑥 ∣ ∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} |
24 | | df-rab 2457 |
. . . 4
⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))} |
25 | 22, 23, 24 | 3eqtr4g 2228 |
. . 3
⊢ (𝐹 Fn 𝐴 → dom {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)}) |
26 | 25 | adantr 274 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)}) |
27 | 10, 26 | eqtrd 2203 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∩ 𝐺) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)}) |