| Step | Hyp | Ref
| Expression |
| 1 | | dffn5im 5609 |
. . . . . 6
⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| 2 | | df-mpt 4097 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} |
| 3 | 1, 2 | eqtrdi 2245 |
. . . . 5
⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
| 4 | | dffn5im 5609 |
. . . . . 6
⊢ (𝐺 Fn 𝐴 → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) |
| 5 | | df-mpt 4097 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))} |
| 6 | 4, 5 | eqtrdi 2245 |
. . . . 5
⊢ (𝐺 Fn 𝐴 → 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))}) |
| 7 | 3, 6 | ineqan12d 3367 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 ∩ 𝐺) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))})) |
| 8 | | inopab 4799 |
. . . 4
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))}) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} |
| 9 | 7, 8 | eqtrdi 2245 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 ∩ 𝐺) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))}) |
| 10 | 9 | dmeqd 4869 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∩ 𝐺) = dom {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))}) |
| 11 | | anandi 590 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥))) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))) |
| 12 | 11 | exbii 1619 |
. . . . . . 7
⊢
(∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥))) ↔ ∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))) |
| 13 | | 19.42v 1921 |
. . . . . . 7
⊢
(∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥))) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥)))) |
| 14 | 12, 13 | bitr3i 186 |
. . . . . 6
⊢
(∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥)))) |
| 15 | | funfvex 5578 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) |
| 16 | | eqeq1 2203 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐹‘𝑥) → (𝑦 = (𝐺‘𝑥) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 17 | 16 | ceqsexgv 2893 |
. . . . . . . . 9
⊢ ((𝐹‘𝑥) ∈ V → (∃𝑦(𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥)) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 18 | 15, 17 | syl 14 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ dom 𝐹) → (∃𝑦(𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥)) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 19 | 18 | funfni 5361 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (∃𝑦(𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥)) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 20 | 19 | pm5.32da 452 |
. . . . . 6
⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥))) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐺‘𝑥)))) |
| 21 | 14, 20 | bitrid 192 |
. . . . 5
⊢ (𝐹 Fn 𝐴 → (∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐺‘𝑥)))) |
| 22 | 21 | abbidv 2314 |
. . . 4
⊢ (𝐹 Fn 𝐴 → {𝑥 ∣ ∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))}) |
| 23 | | dmopab 4878 |
. . . 4
⊢ dom
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} = {𝑥 ∣ ∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} |
| 24 | | df-rab 2484 |
. . . 4
⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))} |
| 25 | 22, 23, 24 | 3eqtr4g 2254 |
. . 3
⊢ (𝐹 Fn 𝐴 → dom {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)}) |
| 26 | 25 | adantr 276 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)}) |
| 27 | 10, 26 | eqtrd 2229 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∩ 𝐺) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)}) |