ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidcenumlemrk GIF version

Theorem fidcenumlemrk 6661
Description: Lemma for fidcenum 6663. (Contributed by Jim Kingdon, 20-Oct-2022.)
Hypotheses
Ref Expression
fidcenumlemr.dc (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
fidcenumlemr.n (𝜑𝑁 ∈ ω)
fidcenumlemr.f (𝜑𝐹:𝑁onto𝐴)
fidcenumlemrk.k (𝜑𝐾 ∈ ω)
fidcenumlemrk.kn (𝜑𝐾𝑁)
fidcenumlemrk.x (𝜑𝑋𝐴)
Assertion
Ref Expression
fidcenumlemrk (𝜑 → (𝑋 ∈ (𝐹𝐾) ∨ ¬ 𝑋 ∈ (𝐹𝐾)))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐾(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem fidcenumlemrk
Dummy variables 𝑗 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fidcenumlemrk.k . 2 (𝜑𝐾 ∈ ω)
2 fidcenumlemrk.kn . . 3 (𝜑𝐾𝑁)
32ancli 316 . 2 (𝜑 → (𝜑𝐾𝑁))
4 sseq1 3047 . . . . 5 (𝑤 = ∅ → (𝑤𝑁 ↔ ∅ ⊆ 𝑁))
54anbi2d 452 . . . 4 (𝑤 = ∅ → ((𝜑𝑤𝑁) ↔ (𝜑 ∧ ∅ ⊆ 𝑁)))
6 imaeq2 4770 . . . . . 6 (𝑤 = ∅ → (𝐹𝑤) = (𝐹 “ ∅))
76eleq2d 2157 . . . . 5 (𝑤 = ∅ → (𝑋 ∈ (𝐹𝑤) ↔ 𝑋 ∈ (𝐹 “ ∅)))
87notbid 627 . . . . 5 (𝑤 = ∅ → (¬ 𝑋 ∈ (𝐹𝑤) ↔ ¬ 𝑋 ∈ (𝐹 “ ∅)))
97, 8orbi12d 742 . . . 4 (𝑤 = ∅ → ((𝑋 ∈ (𝐹𝑤) ∨ ¬ 𝑋 ∈ (𝐹𝑤)) ↔ (𝑋 ∈ (𝐹 “ ∅) ∨ ¬ 𝑋 ∈ (𝐹 “ ∅))))
105, 9imbi12d 232 . . 3 (𝑤 = ∅ → (((𝜑𝑤𝑁) → (𝑋 ∈ (𝐹𝑤) ∨ ¬ 𝑋 ∈ (𝐹𝑤))) ↔ ((𝜑 ∧ ∅ ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ ∅) ∨ ¬ 𝑋 ∈ (𝐹 “ ∅)))))
11 sseq1 3047 . . . . 5 (𝑤 = 𝑗 → (𝑤𝑁𝑗𝑁))
1211anbi2d 452 . . . 4 (𝑤 = 𝑗 → ((𝜑𝑤𝑁) ↔ (𝜑𝑗𝑁)))
13 imaeq2 4770 . . . . . 6 (𝑤 = 𝑗 → (𝐹𝑤) = (𝐹𝑗))
1413eleq2d 2157 . . . . 5 (𝑤 = 𝑗 → (𝑋 ∈ (𝐹𝑤) ↔ 𝑋 ∈ (𝐹𝑗)))
1514notbid 627 . . . . 5 (𝑤 = 𝑗 → (¬ 𝑋 ∈ (𝐹𝑤) ↔ ¬ 𝑋 ∈ (𝐹𝑗)))
1614, 15orbi12d 742 . . . 4 (𝑤 = 𝑗 → ((𝑋 ∈ (𝐹𝑤) ∨ ¬ 𝑋 ∈ (𝐹𝑤)) ↔ (𝑋 ∈ (𝐹𝑗) ∨ ¬ 𝑋 ∈ (𝐹𝑗))))
1712, 16imbi12d 232 . . 3 (𝑤 = 𝑗 → (((𝜑𝑤𝑁) → (𝑋 ∈ (𝐹𝑤) ∨ ¬ 𝑋 ∈ (𝐹𝑤))) ↔ ((𝜑𝑗𝑁) → (𝑋 ∈ (𝐹𝑗) ∨ ¬ 𝑋 ∈ (𝐹𝑗)))))
18 sseq1 3047 . . . . 5 (𝑤 = suc 𝑗 → (𝑤𝑁 ↔ suc 𝑗𝑁))
1918anbi2d 452 . . . 4 (𝑤 = suc 𝑗 → ((𝜑𝑤𝑁) ↔ (𝜑 ∧ suc 𝑗𝑁)))
20 imaeq2 4770 . . . . . 6 (𝑤 = suc 𝑗 → (𝐹𝑤) = (𝐹 “ suc 𝑗))
2120eleq2d 2157 . . . . 5 (𝑤 = suc 𝑗 → (𝑋 ∈ (𝐹𝑤) ↔ 𝑋 ∈ (𝐹 “ suc 𝑗)))
2221notbid 627 . . . . 5 (𝑤 = suc 𝑗 → (¬ 𝑋 ∈ (𝐹𝑤) ↔ ¬ 𝑋 ∈ (𝐹 “ suc 𝑗)))
2321, 22orbi12d 742 . . . 4 (𝑤 = suc 𝑗 → ((𝑋 ∈ (𝐹𝑤) ∨ ¬ 𝑋 ∈ (𝐹𝑤)) ↔ (𝑋 ∈ (𝐹 “ suc 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝑗))))
2419, 23imbi12d 232 . . 3 (𝑤 = suc 𝑗 → (((𝜑𝑤𝑁) → (𝑋 ∈ (𝐹𝑤) ∨ ¬ 𝑋 ∈ (𝐹𝑤))) ↔ ((𝜑 ∧ suc 𝑗𝑁) → (𝑋 ∈ (𝐹 “ suc 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝑗)))))
25 sseq1 3047 . . . . 5 (𝑤 = 𝐾 → (𝑤𝑁𝐾𝑁))
2625anbi2d 452 . . . 4 (𝑤 = 𝐾 → ((𝜑𝑤𝑁) ↔ (𝜑𝐾𝑁)))
27 imaeq2 4770 . . . . . 6 (𝑤 = 𝐾 → (𝐹𝑤) = (𝐹𝐾))
2827eleq2d 2157 . . . . 5 (𝑤 = 𝐾 → (𝑋 ∈ (𝐹𝑤) ↔ 𝑋 ∈ (𝐹𝐾)))
2928notbid 627 . . . . 5 (𝑤 = 𝐾 → (¬ 𝑋 ∈ (𝐹𝑤) ↔ ¬ 𝑋 ∈ (𝐹𝐾)))
3028, 29orbi12d 742 . . . 4 (𝑤 = 𝐾 → ((𝑋 ∈ (𝐹𝑤) ∨ ¬ 𝑋 ∈ (𝐹𝑤)) ↔ (𝑋 ∈ (𝐹𝐾) ∨ ¬ 𝑋 ∈ (𝐹𝐾))))
3126, 30imbi12d 232 . . 3 (𝑤 = 𝐾 → (((𝜑𝑤𝑁) → (𝑋 ∈ (𝐹𝑤) ∨ ¬ 𝑋 ∈ (𝐹𝑤))) ↔ ((𝜑𝐾𝑁) → (𝑋 ∈ (𝐹𝐾) ∨ ¬ 𝑋 ∈ (𝐹𝐾)))))
32 noel 3290 . . . . . 6 ¬ 𝑋 ∈ ∅
33 ima0 4791 . . . . . . 7 (𝐹 “ ∅) = ∅
3433eleq2i 2154 . . . . . 6 (𝑋 ∈ (𝐹 “ ∅) ↔ 𝑋 ∈ ∅)
3532, 34mtbir 631 . . . . 5 ¬ 𝑋 ∈ (𝐹 “ ∅)
3635a1i 9 . . . 4 ((𝜑 ∧ ∅ ⊆ 𝑁) → ¬ 𝑋 ∈ (𝐹 “ ∅))
3736olcd 688 . . 3 ((𝜑 ∧ ∅ ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ ∅) ∨ ¬ 𝑋 ∈ (𝐹 “ ∅)))
38 fidcenumlemr.dc . . . . . 6 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
3938ad2antrl 474 . . . . 5 (((𝑗 ∈ ω ∧ ((𝜑𝑗𝑁) → (𝑋 ∈ (𝐹𝑗) ∨ ¬ 𝑋 ∈ (𝐹𝑗)))) ∧ (𝜑 ∧ suc 𝑗𝑁)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
40 fidcenumlemr.n . . . . . 6 (𝜑𝑁 ∈ ω)
4140ad2antrl 474 . . . . 5 (((𝑗 ∈ ω ∧ ((𝜑𝑗𝑁) → (𝑋 ∈ (𝐹𝑗) ∨ ¬ 𝑋 ∈ (𝐹𝑗)))) ∧ (𝜑 ∧ suc 𝑗𝑁)) → 𝑁 ∈ ω)
42 fidcenumlemr.f . . . . . 6 (𝜑𝐹:𝑁onto𝐴)
4342ad2antrl 474 . . . . 5 (((𝑗 ∈ ω ∧ ((𝜑𝑗𝑁) → (𝑋 ∈ (𝐹𝑗) ∨ ¬ 𝑋 ∈ (𝐹𝑗)))) ∧ (𝜑 ∧ suc 𝑗𝑁)) → 𝐹:𝑁onto𝐴)
44 simpll 496 . . . . 5 (((𝑗 ∈ ω ∧ ((𝜑𝑗𝑁) → (𝑋 ∈ (𝐹𝑗) ∨ ¬ 𝑋 ∈ (𝐹𝑗)))) ∧ (𝜑 ∧ suc 𝑗𝑁)) → 𝑗 ∈ ω)
45 simprr 499 . . . . 5 (((𝑗 ∈ ω ∧ ((𝜑𝑗𝑁) → (𝑋 ∈ (𝐹𝑗) ∨ ¬ 𝑋 ∈ (𝐹𝑗)))) ∧ (𝜑 ∧ suc 𝑗𝑁)) → suc 𝑗𝑁)
46 simprl 498 . . . . . 6 (((𝑗 ∈ ω ∧ ((𝜑𝑗𝑁) → (𝑋 ∈ (𝐹𝑗) ∨ ¬ 𝑋 ∈ (𝐹𝑗)))) ∧ (𝜑 ∧ suc 𝑗𝑁)) → 𝜑)
47 sssucid 4242 . . . . . . 7 𝑗 ⊆ suc 𝑗
4847, 45syl5ss 3036 . . . . . 6 (((𝑗 ∈ ω ∧ ((𝜑𝑗𝑁) → (𝑋 ∈ (𝐹𝑗) ∨ ¬ 𝑋 ∈ (𝐹𝑗)))) ∧ (𝜑 ∧ suc 𝑗𝑁)) → 𝑗𝑁)
49 simplr 497 . . . . . 6 (((𝑗 ∈ ω ∧ ((𝜑𝑗𝑁) → (𝑋 ∈ (𝐹𝑗) ∨ ¬ 𝑋 ∈ (𝐹𝑗)))) ∧ (𝜑 ∧ suc 𝑗𝑁)) → ((𝜑𝑗𝑁) → (𝑋 ∈ (𝐹𝑗) ∨ ¬ 𝑋 ∈ (𝐹𝑗))))
5046, 48, 49mp2and 424 . . . . 5 (((𝑗 ∈ ω ∧ ((𝜑𝑗𝑁) → (𝑋 ∈ (𝐹𝑗) ∨ ¬ 𝑋 ∈ (𝐹𝑗)))) ∧ (𝜑 ∧ suc 𝑗𝑁)) → (𝑋 ∈ (𝐹𝑗) ∨ ¬ 𝑋 ∈ (𝐹𝑗)))
51 fidcenumlemrk.x . . . . . 6 (𝜑𝑋𝐴)
5251ad2antrl 474 . . . . 5 (((𝑗 ∈ ω ∧ ((𝜑𝑗𝑁) → (𝑋 ∈ (𝐹𝑗) ∨ ¬ 𝑋 ∈ (𝐹𝑗)))) ∧ (𝜑 ∧ suc 𝑗𝑁)) → 𝑋𝐴)
5339, 41, 43, 44, 45, 50, 52fidcenumlemrks 6660 . . . 4 (((𝑗 ∈ ω ∧ ((𝜑𝑗𝑁) → (𝑋 ∈ (𝐹𝑗) ∨ ¬ 𝑋 ∈ (𝐹𝑗)))) ∧ (𝜑 ∧ suc 𝑗𝑁)) → (𝑋 ∈ (𝐹 “ suc 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝑗)))
5453exp31 356 . . 3 (𝑗 ∈ ω → (((𝜑𝑗𝑁) → (𝑋 ∈ (𝐹𝑗) ∨ ¬ 𝑋 ∈ (𝐹𝑗))) → ((𝜑 ∧ suc 𝑗𝑁) → (𝑋 ∈ (𝐹 “ suc 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝑗)))))
5510, 17, 24, 31, 37, 54finds 4415 . 2 (𝐾 ∈ ω → ((𝜑𝐾𝑁) → (𝑋 ∈ (𝐹𝐾) ∨ ¬ 𝑋 ∈ (𝐹𝐾))))
561, 3, 55sylc 61 1 (𝜑 → (𝑋 ∈ (𝐹𝐾) ∨ ¬ 𝑋 ∈ (𝐹𝐾)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wo 664  DECID wdc 780   = wceq 1289  wcel 1438  wral 2359  wss 2999  c0 3286  suc csuc 4192  ωcom 4405  cima 4441  ontowfo 5013
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-id 4120  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fo 5021  df-fv 5023
This theorem is referenced by:  fidcenumlemr  6662
  Copyright terms: Public domain W3C validator