| Step | Hyp | Ref
| Expression |
| 1 | | fidcenumlemrk.k |
. 2
⊢ (𝜑 → 𝐾 ∈ ω) |
| 2 | | fidcenumlemrk.kn |
. . 3
⊢ (𝜑 → 𝐾 ⊆ 𝑁) |
| 3 | 2 | ancli 323 |
. 2
⊢ (𝜑 → (𝜑 ∧ 𝐾 ⊆ 𝑁)) |
| 4 | | sseq1 3206 |
. . . . 5
⊢ (𝑤 = ∅ → (𝑤 ⊆ 𝑁 ↔ ∅ ⊆ 𝑁)) |
| 5 | 4 | anbi2d 464 |
. . . 4
⊢ (𝑤 = ∅ → ((𝜑 ∧ 𝑤 ⊆ 𝑁) ↔ (𝜑 ∧ ∅ ⊆ 𝑁))) |
| 6 | | imaeq2 5005 |
. . . . . 6
⊢ (𝑤 = ∅ → (𝐹 “ 𝑤) = (𝐹 “ ∅)) |
| 7 | 6 | eleq2d 2266 |
. . . . 5
⊢ (𝑤 = ∅ → (𝑋 ∈ (𝐹 “ 𝑤) ↔ 𝑋 ∈ (𝐹 “ ∅))) |
| 8 | 7 | notbid 668 |
. . . . 5
⊢ (𝑤 = ∅ → (¬ 𝑋 ∈ (𝐹 “ 𝑤) ↔ ¬ 𝑋 ∈ (𝐹 “ ∅))) |
| 9 | 7, 8 | orbi12d 794 |
. . . 4
⊢ (𝑤 = ∅ → ((𝑋 ∈ (𝐹 “ 𝑤) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑤)) ↔ (𝑋 ∈ (𝐹 “ ∅) ∨ ¬ 𝑋 ∈ (𝐹 “ ∅)))) |
| 10 | 5, 9 | imbi12d 234 |
. . 3
⊢ (𝑤 = ∅ → (((𝜑 ∧ 𝑤 ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ 𝑤) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑤))) ↔ ((𝜑 ∧ ∅ ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ ∅) ∨ ¬ 𝑋 ∈ (𝐹 “ ∅))))) |
| 11 | | sseq1 3206 |
. . . . 5
⊢ (𝑤 = 𝑗 → (𝑤 ⊆ 𝑁 ↔ 𝑗 ⊆ 𝑁)) |
| 12 | 11 | anbi2d 464 |
. . . 4
⊢ (𝑤 = 𝑗 → ((𝜑 ∧ 𝑤 ⊆ 𝑁) ↔ (𝜑 ∧ 𝑗 ⊆ 𝑁))) |
| 13 | | imaeq2 5005 |
. . . . . 6
⊢ (𝑤 = 𝑗 → (𝐹 “ 𝑤) = (𝐹 “ 𝑗)) |
| 14 | 13 | eleq2d 2266 |
. . . . 5
⊢ (𝑤 = 𝑗 → (𝑋 ∈ (𝐹 “ 𝑤) ↔ 𝑋 ∈ (𝐹 “ 𝑗))) |
| 15 | 14 | notbid 668 |
. . . . 5
⊢ (𝑤 = 𝑗 → (¬ 𝑋 ∈ (𝐹 “ 𝑤) ↔ ¬ 𝑋 ∈ (𝐹 “ 𝑗))) |
| 16 | 14, 15 | orbi12d 794 |
. . . 4
⊢ (𝑤 = 𝑗 → ((𝑋 ∈ (𝐹 “ 𝑤) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑤)) ↔ (𝑋 ∈ (𝐹 “ 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑗)))) |
| 17 | 12, 16 | imbi12d 234 |
. . 3
⊢ (𝑤 = 𝑗 → (((𝜑 ∧ 𝑤 ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ 𝑤) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑤))) ↔ ((𝜑 ∧ 𝑗 ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑗))))) |
| 18 | | sseq1 3206 |
. . . . 5
⊢ (𝑤 = suc 𝑗 → (𝑤 ⊆ 𝑁 ↔ suc 𝑗 ⊆ 𝑁)) |
| 19 | 18 | anbi2d 464 |
. . . 4
⊢ (𝑤 = suc 𝑗 → ((𝜑 ∧ 𝑤 ⊆ 𝑁) ↔ (𝜑 ∧ suc 𝑗 ⊆ 𝑁))) |
| 20 | | imaeq2 5005 |
. . . . . 6
⊢ (𝑤 = suc 𝑗 → (𝐹 “ 𝑤) = (𝐹 “ suc 𝑗)) |
| 21 | 20 | eleq2d 2266 |
. . . . 5
⊢ (𝑤 = suc 𝑗 → (𝑋 ∈ (𝐹 “ 𝑤) ↔ 𝑋 ∈ (𝐹 “ suc 𝑗))) |
| 22 | 21 | notbid 668 |
. . . . 5
⊢ (𝑤 = suc 𝑗 → (¬ 𝑋 ∈ (𝐹 “ 𝑤) ↔ ¬ 𝑋 ∈ (𝐹 “ suc 𝑗))) |
| 23 | 21, 22 | orbi12d 794 |
. . . 4
⊢ (𝑤 = suc 𝑗 → ((𝑋 ∈ (𝐹 “ 𝑤) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑤)) ↔ (𝑋 ∈ (𝐹 “ suc 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝑗)))) |
| 24 | 19, 23 | imbi12d 234 |
. . 3
⊢ (𝑤 = suc 𝑗 → (((𝜑 ∧ 𝑤 ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ 𝑤) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑤))) ↔ ((𝜑 ∧ suc 𝑗 ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ suc 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝑗))))) |
| 25 | | sseq1 3206 |
. . . . 5
⊢ (𝑤 = 𝐾 → (𝑤 ⊆ 𝑁 ↔ 𝐾 ⊆ 𝑁)) |
| 26 | 25 | anbi2d 464 |
. . . 4
⊢ (𝑤 = 𝐾 → ((𝜑 ∧ 𝑤 ⊆ 𝑁) ↔ (𝜑 ∧ 𝐾 ⊆ 𝑁))) |
| 27 | | imaeq2 5005 |
. . . . . 6
⊢ (𝑤 = 𝐾 → (𝐹 “ 𝑤) = (𝐹 “ 𝐾)) |
| 28 | 27 | eleq2d 2266 |
. . . . 5
⊢ (𝑤 = 𝐾 → (𝑋 ∈ (𝐹 “ 𝑤) ↔ 𝑋 ∈ (𝐹 “ 𝐾))) |
| 29 | 28 | notbid 668 |
. . . . 5
⊢ (𝑤 = 𝐾 → (¬ 𝑋 ∈ (𝐹 “ 𝑤) ↔ ¬ 𝑋 ∈ (𝐹 “ 𝐾))) |
| 30 | 28, 29 | orbi12d 794 |
. . . 4
⊢ (𝑤 = 𝐾 → ((𝑋 ∈ (𝐹 “ 𝑤) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑤)) ↔ (𝑋 ∈ (𝐹 “ 𝐾) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝐾)))) |
| 31 | 26, 30 | imbi12d 234 |
. . 3
⊢ (𝑤 = 𝐾 → (((𝜑 ∧ 𝑤 ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ 𝑤) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑤))) ↔ ((𝜑 ∧ 𝐾 ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ 𝐾) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝐾))))) |
| 32 | | noel 3454 |
. . . . . 6
⊢ ¬
𝑋 ∈
∅ |
| 33 | | ima0 5028 |
. . . . . . 7
⊢ (𝐹 “ ∅) =
∅ |
| 34 | 33 | eleq2i 2263 |
. . . . . 6
⊢ (𝑋 ∈ (𝐹 “ ∅) ↔ 𝑋 ∈ ∅) |
| 35 | 32, 34 | mtbir 672 |
. . . . 5
⊢ ¬
𝑋 ∈ (𝐹 “ ∅) |
| 36 | 35 | a1i 9 |
. . . 4
⊢ ((𝜑 ∧ ∅ ⊆ 𝑁) → ¬ 𝑋 ∈ (𝐹 “ ∅)) |
| 37 | 36 | olcd 735 |
. . 3
⊢ ((𝜑 ∧ ∅ ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ ∅) ∨ ¬ 𝑋 ∈ (𝐹 “ ∅))) |
| 38 | | fidcenumlemr.dc |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 39 | 38 | ad2antrl 490 |
. . . . 5
⊢ (((𝑗 ∈ ω ∧ ((𝜑 ∧ 𝑗 ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑗)))) ∧ (𝜑 ∧ suc 𝑗 ⊆ 𝑁)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 40 | | fidcenumlemr.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑁–onto→𝐴) |
| 41 | 40 | ad2antrl 490 |
. . . . 5
⊢ (((𝑗 ∈ ω ∧ ((𝜑 ∧ 𝑗 ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑗)))) ∧ (𝜑 ∧ suc 𝑗 ⊆ 𝑁)) → 𝐹:𝑁–onto→𝐴) |
| 42 | | simpll 527 |
. . . . 5
⊢ (((𝑗 ∈ ω ∧ ((𝜑 ∧ 𝑗 ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑗)))) ∧ (𝜑 ∧ suc 𝑗 ⊆ 𝑁)) → 𝑗 ∈ ω) |
| 43 | | simprr 531 |
. . . . 5
⊢ (((𝑗 ∈ ω ∧ ((𝜑 ∧ 𝑗 ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑗)))) ∧ (𝜑 ∧ suc 𝑗 ⊆ 𝑁)) → suc 𝑗 ⊆ 𝑁) |
| 44 | | simprl 529 |
. . . . . 6
⊢ (((𝑗 ∈ ω ∧ ((𝜑 ∧ 𝑗 ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑗)))) ∧ (𝜑 ∧ suc 𝑗 ⊆ 𝑁)) → 𝜑) |
| 45 | | sssucid 4450 |
. . . . . . 7
⊢ 𝑗 ⊆ suc 𝑗 |
| 46 | 45, 43 | sstrid 3194 |
. . . . . 6
⊢ (((𝑗 ∈ ω ∧ ((𝜑 ∧ 𝑗 ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑗)))) ∧ (𝜑 ∧ suc 𝑗 ⊆ 𝑁)) → 𝑗 ⊆ 𝑁) |
| 47 | | simplr 528 |
. . . . . 6
⊢ (((𝑗 ∈ ω ∧ ((𝜑 ∧ 𝑗 ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑗)))) ∧ (𝜑 ∧ suc 𝑗 ⊆ 𝑁)) → ((𝜑 ∧ 𝑗 ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑗)))) |
| 48 | 44, 46, 47 | mp2and 433 |
. . . . 5
⊢ (((𝑗 ∈ ω ∧ ((𝜑 ∧ 𝑗 ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑗)))) ∧ (𝜑 ∧ suc 𝑗 ⊆ 𝑁)) → (𝑋 ∈ (𝐹 “ 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑗))) |
| 49 | | fidcenumlemrk.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| 50 | 49 | ad2antrl 490 |
. . . . 5
⊢ (((𝑗 ∈ ω ∧ ((𝜑 ∧ 𝑗 ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑗)))) ∧ (𝜑 ∧ suc 𝑗 ⊆ 𝑁)) → 𝑋 ∈ 𝐴) |
| 51 | 39, 41, 42, 43, 48, 50 | fidcenumlemrks 7019 |
. . . 4
⊢ (((𝑗 ∈ ω ∧ ((𝜑 ∧ 𝑗 ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑗)))) ∧ (𝜑 ∧ suc 𝑗 ⊆ 𝑁)) → (𝑋 ∈ (𝐹 “ suc 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝑗))) |
| 52 | 51 | exp31 364 |
. . 3
⊢ (𝑗 ∈ ω → (((𝜑 ∧ 𝑗 ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝑗))) → ((𝜑 ∧ suc 𝑗 ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ suc 𝑗) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝑗))))) |
| 53 | 10, 17, 24, 31, 37, 52 | finds 4636 |
. 2
⊢ (𝐾 ∈ ω → ((𝜑 ∧ 𝐾 ⊆ 𝑁) → (𝑋 ∈ (𝐹 “ 𝐾) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝐾)))) |
| 54 | 1, 3, 53 | sylc 62 |
1
⊢ (𝜑 → (𝑋 ∈ (𝐹 “ 𝐾) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝐾))) |