ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodfopne GIF version

Theorem lmodfopne 14275
Description: The (functionalized) operations of a left module (over a nonzero ring) cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV, 2-Oct-2021.)
Hypotheses
Ref Expression
lmodfopne.t · = ( ·sf𝑊)
lmodfopne.a + = (+𝑓𝑊)
lmodfopne.v 𝑉 = (Base‘𝑊)
lmodfopne.s 𝑆 = (Scalar‘𝑊)
lmodfopne.k 𝐾 = (Base‘𝑆)
lmodfopne.0 0 = (0g𝑆)
lmodfopne.1 1 = (1r𝑆)
Assertion
Ref Expression
lmodfopne ((𝑊 ∈ LMod ∧ 10 ) → +· )

Proof of Theorem lmodfopne
StepHypRef Expression
1 lmodfopne.t . . . . . 6 · = ( ·sf𝑊)
2 lmodfopne.a . . . . . 6 + = (+𝑓𝑊)
3 lmodfopne.v . . . . . 6 𝑉 = (Base‘𝑊)
4 lmodfopne.s . . . . . 6 𝑆 = (Scalar‘𝑊)
5 lmodfopne.k . . . . . 6 𝐾 = (Base‘𝑆)
6 lmodfopne.0 . . . . . 6 0 = (0g𝑆)
7 lmodfopne.1 . . . . . 6 1 = (1r𝑆)
81, 2, 3, 4, 5, 6, 7lmodfopnelem2 14274 . . . . 5 ((𝑊 ∈ LMod ∧ + = · ) → ( 0𝑉1𝑉))
9 simpll 527 . . . . . . . 8 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → 𝑊 ∈ LMod)
10 simpl 109 . . . . . . . . 9 (( 0𝑉1𝑉) → 0𝑉)
1110adantl 277 . . . . . . . 8 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → 0𝑉)
12 eqid 2229 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
133, 12lmod0vcl 14266 . . . . . . . . 9 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
1413ad2antrr 488 . . . . . . . 8 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → (0g𝑊) ∈ 𝑉)
15 eqid 2229 . . . . . . . . . 10 (+g𝑊) = (+g𝑊)
163, 15, 2plusfvalg 13382 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 0𝑉 ∧ (0g𝑊) ∈ 𝑉) → ( 0 + (0g𝑊)) = ( 0 (+g𝑊)(0g𝑊)))
1716eqcomd 2235 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 0𝑉 ∧ (0g𝑊) ∈ 𝑉) → ( 0 (+g𝑊)(0g𝑊)) = ( 0 + (0g𝑊)))
189, 11, 14, 17syl3anc 1271 . . . . . . 7 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 (+g𝑊)(0g𝑊)) = ( 0 + (0g𝑊)))
19 oveq 6000 . . . . . . . 8 ( + = · → ( 0 + (0g𝑊)) = ( 0 · (0g𝑊)))
2019ad2antlr 489 . . . . . . 7 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 + (0g𝑊)) = ( 0 · (0g𝑊)))
2118, 20eqtrd 2262 . . . . . 6 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 (+g𝑊)(0g𝑊)) = ( 0 · (0g𝑊)))
22 lmodgrp 14243 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2322adantr 276 . . . . . . 7 ((𝑊 ∈ LMod ∧ + = · ) → 𝑊 ∈ Grp)
243, 15, 12grprid 13551 . . . . . . 7 ((𝑊 ∈ Grp ∧ 0𝑉) → ( 0 (+g𝑊)(0g𝑊)) = 0 )
2523, 10, 24syl2an 289 . . . . . 6 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 (+g𝑊)(0g𝑊)) = 0 )
264, 5, 6lmod0cl 14263 . . . . . . . . 9 (𝑊 ∈ LMod → 0𝐾)
2726ad2antrr 488 . . . . . . . 8 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → 0𝐾)
28 eqid 2229 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
293, 4, 5, 1, 28scafvalg 14256 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 0𝐾 ∧ (0g𝑊) ∈ 𝑉) → ( 0 · (0g𝑊)) = ( 0 ( ·𝑠𝑊)(0g𝑊)))
309, 27, 14, 29syl3anc 1271 . . . . . . 7 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 · (0g𝑊)) = ( 0 ( ·𝑠𝑊)(0g𝑊)))
3126ancli 323 . . . . . . . . 9 (𝑊 ∈ LMod → (𝑊 ∈ LMod ∧ 0𝐾))
3231ad2antrr 488 . . . . . . . 8 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → (𝑊 ∈ LMod ∧ 0𝐾))
334, 28, 5, 12lmodvs0 14271 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 0𝐾) → ( 0 ( ·𝑠𝑊)(0g𝑊)) = (0g𝑊))
3432, 33syl 14 . . . . . . 7 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 ( ·𝑠𝑊)(0g𝑊)) = (0g𝑊))
35 simpr 110 . . . . . . . . . 10 (( 0𝑉1𝑉) → 1𝑉)
363, 15, 12grprid 13551 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 1𝑉) → ( 1 (+g𝑊)(0g𝑊)) = 1 )
3723, 35, 36syl2an 289 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 (+g𝑊)(0g𝑊)) = 1 )
384, 5, 7lmod1cl 14264 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 1𝐾)
3938ad2antrr 488 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → 1𝐾)
4035adantl 277 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → 1𝑉)
413, 4, 5, 1, 28scafvalg 14256 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 1𝐾1𝑉) → ( 1 · 1 ) = ( 1 ( ·𝑠𝑊) 1 ))
429, 39, 40, 41syl3anc 1271 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 · 1 ) = ( 1 ( ·𝑠𝑊) 1 ))
433, 4, 28, 7lmodvs1 14265 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 1𝑉) → ( 1 ( ·𝑠𝑊) 1 ) = 1 )
4443ad2ant2rl 511 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 ( ·𝑠𝑊) 1 ) = 1 )
4542, 44eqtrd 2262 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 · 1 ) = 1 )
46 oveq 6000 . . . . . . . . . . . 12 ( + = · → ( 1 + 1 ) = ( 1 · 1 ))
4746eqcomd 2235 . . . . . . . . . . 11 ( + = · → ( 1 · 1 ) = ( 1 + 1 ))
4847ad2antlr 489 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 · 1 ) = ( 1 + 1 ))
493, 15, 2plusfvalg 13382 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 1𝑉1𝑉) → ( 1 + 1 ) = ( 1 (+g𝑊) 1 ))
509, 40, 40, 49syl3anc 1271 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 + 1 ) = ( 1 (+g𝑊) 1 ))
5148, 50eqtrd 2262 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 · 1 ) = ( 1 (+g𝑊) 1 ))
5237, 45, 513eqtr2d 2268 . . . . . . . 8 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 (+g𝑊)(0g𝑊)) = ( 1 (+g𝑊) 1 ))
5322ad2antrr 488 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → 𝑊 ∈ Grp)
543, 15grplcan 13581 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ ((0g𝑊) ∈ 𝑉1𝑉1𝑉)) → (( 1 (+g𝑊)(0g𝑊)) = ( 1 (+g𝑊) 1 ) ↔ (0g𝑊) = 1 ))
5553, 14, 40, 40, 54syl13anc 1273 . . . . . . . 8 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → (( 1 (+g𝑊)(0g𝑊)) = ( 1 (+g𝑊) 1 ) ↔ (0g𝑊) = 1 ))
5652, 55mpbid 147 . . . . . . 7 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → (0g𝑊) = 1 )
5730, 34, 563eqtrd 2266 . . . . . 6 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 · (0g𝑊)) = 1 )
5821, 25, 573eqtr3rd 2271 . . . . 5 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → 1 = 0 )
598, 58mpdan 421 . . . 4 ((𝑊 ∈ LMod ∧ + = · ) → 1 = 0 )
6059ex 115 . . 3 (𝑊 ∈ LMod → ( + = ·1 = 0 ))
6160necon3d 2444 . 2 (𝑊 ∈ LMod → ( 10+· ))
6261imp 124 1 ((𝑊 ∈ LMod ∧ 10 ) → +· )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wne 2400  cfv 5314  (class class class)co 5994  Basecbs 13018  +gcplusg 13096  Scalarcsca 13099   ·𝑠 cvsca 13100  0gc0g 13275  +𝑓cplusf 13372  Grpcgrp 13519  1rcur 13908  LModclmod 14236   ·sf cscaf 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-pre-ltirr 8099  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-pnf 8171  df-mnf 8172  df-ltxr 8174  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-plusg 13109  df-mulr 13110  df-sca 13112  df-vsca 13113  df-0g 13277  df-plusf 13374  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-minusg 13523  df-mgp 13870  df-ur 13909  df-ring 13947  df-lmod 14238  df-scaf 14239
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator