Proof of Theorem lmodfopne
Step | Hyp | Ref
| Expression |
1 | | lmodfopne.t |
. . . . . 6
⊢ · = (
·sf ‘𝑊) |
2 | | lmodfopne.a |
. . . . . 6
⊢ + =
(+𝑓‘𝑊) |
3 | | lmodfopne.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑊) |
4 | | lmodfopne.s |
. . . . . 6
⊢ 𝑆 = (Scalar‘𝑊) |
5 | | lmodfopne.k |
. . . . . 6
⊢ 𝐾 = (Base‘𝑆) |
6 | | lmodfopne.0 |
. . . . . 6
⊢ 0 =
(0g‘𝑆) |
7 | | lmodfopne.1 |
. . . . . 6
⊢ 1 =
(1r‘𝑆) |
8 | 1, 2, 3, 4, 5, 6, 7 | lmodfopnelem2 13821 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ + = · )
→ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉)) |
9 | | simpll 527 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → 𝑊 ∈ LMod) |
10 | | simpl 109 |
. . . . . . . . 9
⊢ (( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉) → 0 ∈ 𝑉) |
11 | 10 | adantl 277 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → 0 ∈ 𝑉) |
12 | | eqid 2193 |
. . . . . . . . . 10
⊢
(0g‘𝑊) = (0g‘𝑊) |
13 | 3, 12 | lmod0vcl 13813 |
. . . . . . . . 9
⊢ (𝑊 ∈ LMod →
(0g‘𝑊)
∈ 𝑉) |
14 | 13 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) →
(0g‘𝑊)
∈ 𝑉) |
15 | | eqid 2193 |
. . . . . . . . . 10
⊢
(+g‘𝑊) = (+g‘𝑊) |
16 | 3, 15, 2 | plusfvalg 12946 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 0 ∈ 𝑉 ∧
(0g‘𝑊)
∈ 𝑉) → ( 0 +
(0g‘𝑊)) =
( 0
(+g‘𝑊)(0g‘𝑊))) |
17 | 16 | eqcomd 2199 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 0 ∈ 𝑉 ∧
(0g‘𝑊)
∈ 𝑉) → ( 0
(+g‘𝑊)(0g‘𝑊)) = ( 0 + (0g‘𝑊))) |
18 | 9, 11, 14, 17 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 (+g‘𝑊)(0g‘𝑊)) = ( 0 + (0g‘𝑊))) |
19 | | oveq 5924 |
. . . . . . . 8
⊢ ( + = · →
( 0 +
(0g‘𝑊)) =
( 0 ·
(0g‘𝑊))) |
20 | 19 | ad2antlr 489 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 + (0g‘𝑊)) = ( 0 ·
(0g‘𝑊))) |
21 | 18, 20 | eqtrd 2226 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 (+g‘𝑊)(0g‘𝑊)) = ( 0 ·
(0g‘𝑊))) |
22 | | lmodgrp 13790 |
. . . . . . . 8
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
23 | 22 | adantr 276 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ + = · )
→ 𝑊 ∈
Grp) |
24 | 3, 15, 12 | grprid 13104 |
. . . . . . 7
⊢ ((𝑊 ∈ Grp ∧ 0 ∈ 𝑉) → ( 0 (+g‘𝑊)(0g‘𝑊)) = 0 ) |
25 | 23, 10, 24 | syl2an 289 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 (+g‘𝑊)(0g‘𝑊)) = 0 ) |
26 | 4, 5, 6 | lmod0cl 13810 |
. . . . . . . . 9
⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
27 | 26 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → 0 ∈ 𝐾) |
28 | | eqid 2193 |
. . . . . . . . 9
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
29 | 3, 4, 5, 1, 28 | scafvalg 13803 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 0 ∈ 𝐾 ∧
(0g‘𝑊)
∈ 𝑉) → ( 0 ·
(0g‘𝑊)) =
( 0 (
·𝑠 ‘𝑊)(0g‘𝑊))) |
30 | 9, 27, 14, 29 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 ·
(0g‘𝑊)) =
( 0 (
·𝑠 ‘𝑊)(0g‘𝑊))) |
31 | 26 | ancli 323 |
. . . . . . . . 9
⊢ (𝑊 ∈ LMod → (𝑊 ∈ LMod ∧ 0 ∈ 𝐾)) |
32 | 31 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → (𝑊 ∈ LMod ∧ 0 ∈ 𝐾)) |
33 | 4, 28, 5, 12 | lmodvs0 13818 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 0 ∈ 𝐾) → ( 0 (
·𝑠 ‘𝑊)(0g‘𝑊)) = (0g‘𝑊)) |
34 | 32, 33 | syl 14 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 (
·𝑠 ‘𝑊)(0g‘𝑊)) = (0g‘𝑊)) |
35 | | simpr 110 |
. . . . . . . . . 10
⊢ (( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉) → 1 ∈ 𝑉) |
36 | 3, 15, 12 | grprid 13104 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Grp ∧ 1 ∈ 𝑉) → ( 1 (+g‘𝑊)(0g‘𝑊)) = 1 ) |
37 | 23, 35, 36 | syl2an 289 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 (+g‘𝑊)(0g‘𝑊)) = 1 ) |
38 | 4, 5, 7 | lmod1cl 13811 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ LMod → 1 ∈ 𝐾) |
39 | 38 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → 1 ∈ 𝐾) |
40 | 35 | adantl 277 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → 1 ∈ 𝑉) |
41 | 3, 4, 5, 1, 28 | scafvalg 13803 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ LMod ∧ 1 ∈ 𝐾 ∧ 1 ∈ 𝑉) → ( 1 · 1 ) = ( 1 (
·𝑠 ‘𝑊) 1 )) |
42 | 9, 39, 40, 41 | syl3anc 1249 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 · 1 ) = ( 1 (
·𝑠 ‘𝑊) 1 )) |
43 | 3, 4, 28, 7 | lmodvs1 13812 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ LMod ∧ 1 ∈ 𝑉) → ( 1 (
·𝑠 ‘𝑊) 1 ) = 1 ) |
44 | 43 | ad2ant2rl 511 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 (
·𝑠 ‘𝑊) 1 ) = 1 ) |
45 | 42, 44 | eqtrd 2226 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 · 1 ) = 1 ) |
46 | | oveq 5924 |
. . . . . . . . . . . 12
⊢ ( + = · →
( 1 + 1 ) = ( 1 · 1
)) |
47 | 46 | eqcomd 2199 |
. . . . . . . . . . 11
⊢ ( + = · →
( 1 · 1 ) = ( 1 + 1
)) |
48 | 47 | ad2antlr 489 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 · 1 ) = ( 1 + 1 )) |
49 | 3, 15, 2 | plusfvalg 12946 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ LMod ∧ 1 ∈ 𝑉 ∧ 1 ∈ 𝑉) → ( 1 + 1 ) = ( 1 (+g‘𝑊) 1 )) |
50 | 9, 40, 40, 49 | syl3anc 1249 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 + 1 ) = ( 1 (+g‘𝑊) 1 )) |
51 | 48, 50 | eqtrd 2226 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 · 1 ) = ( 1 (+g‘𝑊) 1 )) |
52 | 37, 45, 51 | 3eqtr2d 2232 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 (+g‘𝑊)(0g‘𝑊)) = ( 1 (+g‘𝑊) 1 )) |
53 | 22 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → 𝑊 ∈ Grp) |
54 | 3, 15 | grplcan 13134 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Grp ∧
((0g‘𝑊)
∈ 𝑉 ∧ 1 ∈ 𝑉 ∧ 1 ∈ 𝑉)) → (( 1 (+g‘𝑊)(0g‘𝑊)) = ( 1 (+g‘𝑊) 1 ) ↔
(0g‘𝑊) =
1
)) |
55 | 53, 14, 40, 40, 54 | syl13anc 1251 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → (( 1 (+g‘𝑊)(0g‘𝑊)) = ( 1 (+g‘𝑊) 1 ) ↔
(0g‘𝑊) =
1
)) |
56 | 52, 55 | mpbid 147 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) →
(0g‘𝑊) =
1
) |
57 | 30, 34, 56 | 3eqtrd 2230 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 ·
(0g‘𝑊)) =
1
) |
58 | 21, 25, 57 | 3eqtr3rd 2235 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → 1 = 0 ) |
59 | 8, 58 | mpdan 421 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ + = · )
→ 1
= 0
) |
60 | 59 | ex 115 |
. . 3
⊢ (𝑊 ∈ LMod → ( + = · →
1 = 0
)) |
61 | 60 | necon3d 2408 |
. 2
⊢ (𝑊 ∈ LMod → ( 1 ≠ 0 → + ≠ ·
)) |
62 | 61 | imp 124 |
1
⊢ ((𝑊 ∈ LMod ∧ 1 ≠ 0 ) →
+ ≠
·
) |