Step | Hyp | Ref
| Expression |
1 | | lmodfopne.t |
. . . . . 6
β’ Β· = (
Β·sf βπ) |
2 | | lmodfopne.a |
. . . . . 6
β’ + =
(+πβπ) |
3 | | lmodfopne.v |
. . . . . 6
β’ π = (Baseβπ) |
4 | | lmodfopne.s |
. . . . . 6
β’ π = (Scalarβπ) |
5 | | lmodfopne.k |
. . . . . 6
β’ πΎ = (Baseβπ) |
6 | | lmodfopne.0 |
. . . . . 6
β’ 0 =
(0gβπ) |
7 | | lmodfopne.1 |
. . . . . 6
β’ 1 =
(1rβπ) |
8 | 1, 2, 3, 4, 5, 6, 7 | lmodfopnelem2 13420 |
. . . . 5
β’ ((π β LMod β§ + = Β· )
β ( 0 β π β§ 1 β π)) |
9 | | simpll 527 |
. . . . . . . 8
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β π β LMod) |
10 | | simpl 109 |
. . . . . . . . 9
β’ (( 0 β π β§ 1 β π) β 0 β π) |
11 | 10 | adantl 277 |
. . . . . . . 8
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β 0 β π) |
12 | | eqid 2177 |
. . . . . . . . . 10
β’
(0gβπ) = (0gβπ) |
13 | 3, 12 | lmod0vcl 13412 |
. . . . . . . . 9
β’ (π β LMod β
(0gβπ)
β π) |
14 | 13 | ad2antrr 488 |
. . . . . . . 8
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β
(0gβπ)
β π) |
15 | | eqid 2177 |
. . . . . . . . . 10
β’
(+gβπ) = (+gβπ) |
16 | 3, 15, 2 | plusfvalg 12787 |
. . . . . . . . 9
β’ ((π β LMod β§ 0 β π β§
(0gβπ)
β π) β ( 0 +
(0gβπ)) =
( 0
(+gβπ)(0gβπ))) |
17 | 16 | eqcomd 2183 |
. . . . . . . 8
β’ ((π β LMod β§ 0 β π β§
(0gβπ)
β π) β ( 0
(+gβπ)(0gβπ)) = ( 0 + (0gβπ))) |
18 | 9, 11, 14, 17 | syl3anc 1238 |
. . . . . . 7
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 0 (+gβπ)(0gβπ)) = ( 0 + (0gβπ))) |
19 | | oveq 5883 |
. . . . . . . 8
β’ ( + = Β· β
( 0 +
(0gβπ)) =
( 0 Β·
(0gβπ))) |
20 | 19 | ad2antlr 489 |
. . . . . . 7
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 0 + (0gβπ)) = ( 0 Β·
(0gβπ))) |
21 | 18, 20 | eqtrd 2210 |
. . . . . 6
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 0 (+gβπ)(0gβπ)) = ( 0 Β·
(0gβπ))) |
22 | | lmodgrp 13389 |
. . . . . . . 8
β’ (π β LMod β π β Grp) |
23 | 22 | adantr 276 |
. . . . . . 7
β’ ((π β LMod β§ + = Β· )
β π β
Grp) |
24 | 3, 15, 12 | grprid 12912 |
. . . . . . 7
β’ ((π β Grp β§ 0 β π) β ( 0 (+gβπ)(0gβπ)) = 0 ) |
25 | 23, 10, 24 | syl2an 289 |
. . . . . 6
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 0 (+gβπ)(0gβπ)) = 0 ) |
26 | 4, 5, 6 | lmod0cl 13409 |
. . . . . . . . 9
β’ (π β LMod β 0 β πΎ) |
27 | 26 | ad2antrr 488 |
. . . . . . . 8
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β 0 β πΎ) |
28 | | eqid 2177 |
. . . . . . . . 9
β’ (
Β·π βπ) = ( Β·π
βπ) |
29 | 3, 4, 5, 1, 28 | scafvalg 13402 |
. . . . . . . 8
β’ ((π β LMod β§ 0 β πΎ β§
(0gβπ)
β π) β ( 0 Β·
(0gβπ)) =
( 0 (
Β·π βπ)(0gβπ))) |
30 | 9, 27, 14, 29 | syl3anc 1238 |
. . . . . . 7
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 0 Β·
(0gβπ)) =
( 0 (
Β·π βπ)(0gβπ))) |
31 | 26 | ancli 323 |
. . . . . . . . 9
β’ (π β LMod β (π β LMod β§ 0 β πΎ)) |
32 | 31 | ad2antrr 488 |
. . . . . . . 8
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β (π β LMod β§ 0 β πΎ)) |
33 | 4, 28, 5, 12 | lmodvs0 13417 |
. . . . . . . 8
β’ ((π β LMod β§ 0 β πΎ) β ( 0 (
Β·π βπ)(0gβπ)) = (0gβπ)) |
34 | 32, 33 | syl 14 |
. . . . . . 7
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 0 (
Β·π βπ)(0gβπ)) = (0gβπ)) |
35 | | simpr 110 |
. . . . . . . . . 10
β’ (( 0 β π β§ 1 β π) β 1 β π) |
36 | 3, 15, 12 | grprid 12912 |
. . . . . . . . . 10
β’ ((π β Grp β§ 1 β π) β ( 1 (+gβπ)(0gβπ)) = 1 ) |
37 | 23, 35, 36 | syl2an 289 |
. . . . . . . . 9
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 1 (+gβπ)(0gβπ)) = 1 ) |
38 | 4, 5, 7 | lmod1cl 13410 |
. . . . . . . . . . . 12
β’ (π β LMod β 1 β πΎ) |
39 | 38 | ad2antrr 488 |
. . . . . . . . . . 11
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β 1 β πΎ) |
40 | 35 | adantl 277 |
. . . . . . . . . . 11
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β 1 β π) |
41 | 3, 4, 5, 1, 28 | scafvalg 13402 |
. . . . . . . . . . 11
β’ ((π β LMod β§ 1 β πΎ β§ 1 β π) β ( 1 Β· 1 ) = ( 1 (
Β·π βπ) 1 )) |
42 | 9, 39, 40, 41 | syl3anc 1238 |
. . . . . . . . . 10
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 1 Β· 1 ) = ( 1 (
Β·π βπ) 1 )) |
43 | 3, 4, 28, 7 | lmodvs1 13411 |
. . . . . . . . . . 11
β’ ((π β LMod β§ 1 β π) β ( 1 (
Β·π βπ) 1 ) = 1 ) |
44 | 43 | ad2ant2rl 511 |
. . . . . . . . . 10
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 1 (
Β·π βπ) 1 ) = 1 ) |
45 | 42, 44 | eqtrd 2210 |
. . . . . . . . 9
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 1 Β· 1 ) = 1 ) |
46 | | oveq 5883 |
. . . . . . . . . . . 12
β’ ( + = Β· β
( 1 + 1 ) = ( 1 Β· 1
)) |
47 | 46 | eqcomd 2183 |
. . . . . . . . . . 11
β’ ( + = Β· β
( 1 Β· 1 ) = ( 1 + 1
)) |
48 | 47 | ad2antlr 489 |
. . . . . . . . . 10
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 1 Β· 1 ) = ( 1 + 1 )) |
49 | 3, 15, 2 | plusfvalg 12787 |
. . . . . . . . . . 11
β’ ((π β LMod β§ 1 β π β§ 1 β π) β ( 1 + 1 ) = ( 1 (+gβπ) 1 )) |
50 | 9, 40, 40, 49 | syl3anc 1238 |
. . . . . . . . . 10
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 1 + 1 ) = ( 1 (+gβπ) 1 )) |
51 | 48, 50 | eqtrd 2210 |
. . . . . . . . 9
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 1 Β· 1 ) = ( 1 (+gβπ) 1 )) |
52 | 37, 45, 51 | 3eqtr2d 2216 |
. . . . . . . 8
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 1 (+gβπ)(0gβπ)) = ( 1 (+gβπ) 1 )) |
53 | 22 | ad2antrr 488 |
. . . . . . . . 9
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β π β Grp) |
54 | 3, 15 | grplcan 12937 |
. . . . . . . . 9
β’ ((π β Grp β§
((0gβπ)
β π β§ 1 β π β§ 1 β π)) β (( 1 (+gβπ)(0gβπ)) = ( 1 (+gβπ) 1 ) β
(0gβπ) =
1
)) |
55 | 53, 14, 40, 40, 54 | syl13anc 1240 |
. . . . . . . 8
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β (( 1 (+gβπ)(0gβπ)) = ( 1 (+gβπ) 1 ) β
(0gβπ) =
1
)) |
56 | 52, 55 | mpbid 147 |
. . . . . . 7
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β
(0gβπ) =
1
) |
57 | 30, 34, 56 | 3eqtrd 2214 |
. . . . . 6
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 0 Β·
(0gβπ)) =
1
) |
58 | 21, 25, 57 | 3eqtr3rd 2219 |
. . . . 5
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β 1 = 0 ) |
59 | 8, 58 | mpdan 421 |
. . . 4
β’ ((π β LMod β§ + = Β· )
β 1
= 0
) |
60 | 59 | ex 115 |
. . 3
β’ (π β LMod β ( + = Β· β
1 = 0
)) |
61 | 60 | necon3d 2391 |
. 2
β’ (π β LMod β ( 1 β 0 β + β Β·
)) |
62 | 61 | imp 124 |
1
β’ ((π β LMod β§ 1 β 0 ) β
+ β
Β·
) |