| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > letrp1 | GIF version | ||
| Description: A transitive property of 'less than or equal' and plus 1. (Contributed by NM, 5-Aug-2005.) |
| Ref | Expression |
|---|---|
| letrp1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ (𝐵 + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1 8917 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 < (𝐵 + 1)) | |
| 2 | 1 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 < (𝐵 + 1)) |
| 3 | peano2re 8208 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ) | |
| 4 | 3 | ancli 323 | . . . . 5 ⊢ (𝐵 ∈ ℝ → (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ)) |
| 5 | lelttr 8161 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < (𝐵 + 1)) → 𝐴 < (𝐵 + 1))) | |
| 6 | 5 | 3expb 1207 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ)) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < (𝐵 + 1)) → 𝐴 < (𝐵 + 1))) |
| 7 | 4, 6 | sylan2 286 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < (𝐵 + 1)) → 𝐴 < (𝐵 + 1))) |
| 8 | 2, 7 | mpan2d 428 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → 𝐴 < (𝐵 + 1))) |
| 9 | 8 | 3impia 1203 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 < (𝐵 + 1)) |
| 10 | ltle 8160 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → (𝐴 < (𝐵 + 1) → 𝐴 ≤ (𝐵 + 1))) | |
| 11 | 3, 10 | sylan2 286 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < (𝐵 + 1) → 𝐴 ≤ (𝐵 + 1))) |
| 12 | 11 | 3adant3 1020 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴 < (𝐵 + 1) → 𝐴 ≤ (𝐵 + 1))) |
| 13 | 9, 12 | mpd 13 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ (𝐵 + 1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 ∈ wcel 2176 class class class wbr 4044 (class class class)co 5944 ℝcr 7924 1c1 7926 + caddc 7928 < clt 8107 ≤ cle 8108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-iota 5232 df-fv 5279 df-ov 5947 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 |
| This theorem is referenced by: peano2uz 9704 |
| Copyright terms: Public domain | W3C validator |