ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  letrp1 GIF version

Theorem letrp1 8613
Description: A transitive property of 'less than or equal' and plus 1. (Contributed by NM, 5-Aug-2005.)
Assertion
Ref Expression
letrp1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ≤ (𝐵 + 1))

Proof of Theorem letrp1
StepHypRef Expression
1 ltp1 8609 . . . . 5 (𝐵 ∈ ℝ → 𝐵 < (𝐵 + 1))
21adantl 275 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 < (𝐵 + 1))
3 peano2re 7905 . . . . . 6 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
43ancli 321 . . . . 5 (𝐵 ∈ ℝ → (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ))
5 lelttr 7859 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((𝐴𝐵𝐵 < (𝐵 + 1)) → 𝐴 < (𝐵 + 1)))
653expb 1182 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ)) → ((𝐴𝐵𝐵 < (𝐵 + 1)) → 𝐴 < (𝐵 + 1)))
74, 6sylan2 284 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵 < (𝐵 + 1)) → 𝐴 < (𝐵 + 1)))
82, 7mpan2d 424 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐴 < (𝐵 + 1)))
983impia 1178 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 < (𝐵 + 1))
10 ltle 7858 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → (𝐴 < (𝐵 + 1) → 𝐴 ≤ (𝐵 + 1)))
113, 10sylan2 284 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < (𝐵 + 1) → 𝐴 ≤ (𝐵 + 1)))
12113adant3 1001 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐴 < (𝐵 + 1) → 𝐴 ≤ (𝐵 + 1)))
139, 12mpd 13 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ≤ (𝐵 + 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962  wcel 1480   class class class wbr 3929  (class class class)co 5774  cr 7626  1c1 7628   + caddc 7630   < clt 7807  cle 7808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-addcom 7727  ax-addass 7729  ax-i2m1 7732  ax-0lt1 7733  ax-0id 7735  ax-rnegex 7736  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-ltadd 7743
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-cnv 4547  df-iota 5088  df-fv 5131  df-ov 5777  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813
This theorem is referenced by:  peano2uz  9385
  Copyright terms: Public domain W3C validator