Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > letrp1 | GIF version |
Description: A transitive property of 'less than or equal' and plus 1. (Contributed by NM, 5-Aug-2005.) |
Ref | Expression |
---|---|
letrp1 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ (𝐵 + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltp1 8739 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 < (𝐵 + 1)) | |
2 | 1 | adantl 275 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 < (𝐵 + 1)) |
3 | peano2re 8034 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ) | |
4 | 3 | ancli 321 | . . . . 5 ⊢ (𝐵 ∈ ℝ → (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ)) |
5 | lelttr 7987 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < (𝐵 + 1)) → 𝐴 < (𝐵 + 1))) | |
6 | 5 | 3expb 1194 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ)) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < (𝐵 + 1)) → 𝐴 < (𝐵 + 1))) |
7 | 4, 6 | sylan2 284 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < (𝐵 + 1)) → 𝐴 < (𝐵 + 1))) |
8 | 2, 7 | mpan2d 425 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → 𝐴 < (𝐵 + 1))) |
9 | 8 | 3impia 1190 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 < (𝐵 + 1)) |
10 | ltle 7986 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → (𝐴 < (𝐵 + 1) → 𝐴 ≤ (𝐵 + 1))) | |
11 | 3, 10 | sylan2 284 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < (𝐵 + 1) → 𝐴 ≤ (𝐵 + 1))) |
12 | 11 | 3adant3 1007 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴 < (𝐵 + 1) → 𝐴 ≤ (𝐵 + 1))) |
13 | 9, 12 | mpd 13 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ (𝐵 + 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 ∈ wcel 2136 class class class wbr 3982 (class class class)co 5842 ℝcr 7752 1c1 7754 + caddc 7756 < clt 7933 ≤ cle 7934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-iota 5153 df-fv 5196 df-ov 5845 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 |
This theorem is referenced by: peano2uz 9521 |
Copyright terms: Public domain | W3C validator |