| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzid | GIF version | ||
| Description: Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| Ref | Expression |
|---|---|
| uzid | ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 9349 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 2 | 1 | leidd 8560 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ≤ 𝑀) |
| 3 | 2 | ancli 323 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀)) |
| 4 | eluz1 9624 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀))) | |
| 5 | 3, 4 | mpbird 167 | 1 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 ≤ cle 8081 ℤcz 9345 ℤ≥cuz 9620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-pre-ltirr 8010 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-neg 8219 df-z 9346 df-uz 9621 |
| This theorem is referenced by: uzidd 9635 uzn0 9636 uz11 9643 eluzfz1 10125 eluzfz2 10126 elfz3 10128 elfz1end 10149 fzssp1 10161 fzpred 10164 fzp1ss 10167 fzpr 10171 fztp 10172 elfz0add 10214 fzolb 10248 zpnn0elfzo 10302 fzosplitsnm1 10304 fzofzp1 10322 fzosplitsn 10328 fzostep1 10332 zsupcllemstep 10338 zsupcllemex 10339 frec2uzuzd 10513 frecuzrdgrrn 10519 frec2uzrdg 10520 frecuzrdgrcl 10521 frecuzrdgsuc 10525 frecuzrdgrclt 10526 frecuzrdgg 10527 frecuzrdgsuctlem 10534 uzsinds 10555 seq3val 10571 seqvalcd 10572 seq3-1 10573 seqf 10575 seq3p1 10576 seq3fveq 10590 seq3-1p 10601 seq3caopr3 10602 iseqf1olemjpcl 10619 iseqf1olemqpcl 10620 seq3f1oleml 10627 seq3f1o 10628 seq3homo 10638 faclbnd3 10854 bcm1k 10871 bcn2 10875 seq3coll 10953 rexuz3 11174 r19.2uz 11177 resqrexlemcvg 11203 resqrexlemgt0 11204 resqrexlemoverl 11205 cau3lem 11298 caubnd2 11301 climconst 11474 climuni 11477 climcau 11531 serf0 11536 fsumparts 11654 isum1p 11676 isumrpcl 11678 cvgratz 11716 mertenslemi1 11719 ntrivcvgap0 11733 fprodabs 11800 eftlub 11874 bitsfzo 12139 bitsinv1 12146 ialgr0 12239 eucalg 12254 pw2dvds 12361 eulerthlemrprm 12424 oddprm 12455 pcfac 12546 pcbc 12547 ennnfonelem1 12651 gsumfzconst 13549 lmconst 14560 2logb9irr 15315 sqrt2cxp2logb9e3 15319 2logb9irrap 15321 lgseisenlem4 15422 lgsquadlem1 15426 lgsquad2 15432 cvgcmp2nlemabs 15789 trilpolemlt1 15798 |
| Copyright terms: Public domain | W3C validator |