Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uzid | GIF version |
Description: Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
Ref | Expression |
---|---|
uzid | ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9230 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
2 | 1 | leidd 8445 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ≤ 𝑀) |
3 | 2 | ancli 323 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀)) |
4 | eluz1 9505 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀))) | |
5 | 3, 4 | mpbird 167 | 1 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2146 class class class wbr 3998 ‘cfv 5208 ≤ cle 7967 ℤcz 9226 ℤ≥cuz 9501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-pre-ltirr 7898 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-ov 5868 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-neg 8105 df-z 9227 df-uz 9502 |
This theorem is referenced by: uzn0 9516 uz11 9523 eluzfz1 10001 eluzfz2 10002 elfz3 10004 elfz1end 10025 fzssp1 10037 fzpred 10040 fzp1ss 10043 fzpr 10047 fztp 10048 elfz0add 10090 fzolb 10123 zpnn0elfzo 10177 fzosplitsnm1 10179 fzofzp1 10197 fzosplitsn 10203 fzostep1 10207 frec2uzuzd 10372 frecuzrdgrrn 10378 frec2uzrdg 10379 frecuzrdgrcl 10380 frecuzrdgsuc 10384 frecuzrdgrclt 10385 frecuzrdgg 10386 frecuzrdgsuctlem 10393 uzsinds 10412 seq3val 10428 seqvalcd 10429 seq3-1 10430 seqf 10431 seq3p1 10432 seq3fveq 10441 seq3-1p 10450 seq3caopr3 10451 iseqf1olemjpcl 10465 iseqf1olemqpcl 10466 seq3f1oleml 10473 seq3f1o 10474 seq3homo 10480 faclbnd3 10691 bcm1k 10708 bcn2 10712 seq3coll 10790 rexuz3 10967 r19.2uz 10970 resqrexlemcvg 10996 resqrexlemgt0 10997 resqrexlemoverl 10998 cau3lem 11091 caubnd2 11094 climconst 11266 climuni 11269 climcau 11323 serf0 11328 fsumparts 11446 isum1p 11468 isumrpcl 11470 cvgratz 11508 mertenslemi1 11511 ntrivcvgap0 11525 fprodabs 11592 eftlub 11666 zsupcllemstep 11913 zsupcllemex 11914 ialgr0 12011 eucalg 12026 pw2dvds 12133 eulerthlemrprm 12196 oddprm 12226 pcfac 12315 pcbc 12316 ennnfonelem1 12375 lmconst 13287 2logb9irr 13960 sqrt2cxp2logb9e3 13964 2logb9irrap 13966 cvgcmp2nlemabs 14341 trilpolemlt1 14350 |
Copyright terms: Public domain | W3C validator |