| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzid | GIF version | ||
| Description: Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| Ref | Expression |
|---|---|
| uzid | ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 9378 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 2 | 1 | leidd 8589 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ≤ 𝑀) |
| 3 | 2 | ancli 323 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀)) |
| 4 | eluz1 9654 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀))) | |
| 5 | 3, 4 | mpbird 167 | 1 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2176 class class class wbr 4045 ‘cfv 5272 ≤ cle 8110 ℤcz 9374 ℤ≥cuz 9650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-pre-ltirr 8039 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-ov 5949 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-neg 8248 df-z 9375 df-uz 9651 |
| This theorem is referenced by: uzidd 9665 uzn0 9666 uz11 9673 eluzfz1 10155 eluzfz2 10156 elfz3 10158 elfz1end 10179 fzssp1 10191 fzpred 10194 fzp1ss 10197 fzpr 10201 fztp 10202 elfz0add 10244 fzolb 10278 zpnn0elfzo 10338 fzosplitsnm1 10340 fzofzp1 10358 fzosplitsn 10364 fzostep1 10368 zsupcllemstep 10374 zsupcllemex 10375 frec2uzuzd 10549 frecuzrdgrrn 10555 frec2uzrdg 10556 frecuzrdgrcl 10557 frecuzrdgsuc 10561 frecuzrdgrclt 10562 frecuzrdgg 10563 frecuzrdgsuctlem 10570 uzsinds 10591 seq3val 10607 seqvalcd 10608 seq3-1 10609 seqf 10611 seq3p1 10612 seq3fveq 10626 seq3-1p 10637 seq3caopr3 10638 iseqf1olemjpcl 10655 iseqf1olemqpcl 10656 seq3f1oleml 10663 seq3f1o 10664 seq3homo 10674 faclbnd3 10890 bcm1k 10907 bcn2 10911 seq3coll 10989 swrds1 11124 rexuz3 11334 r19.2uz 11337 resqrexlemcvg 11363 resqrexlemgt0 11364 resqrexlemoverl 11365 cau3lem 11458 caubnd2 11461 climconst 11634 climuni 11637 climcau 11691 serf0 11696 fsumparts 11814 isum1p 11836 isumrpcl 11838 cvgratz 11876 mertenslemi1 11879 ntrivcvgap0 11893 fprodabs 11960 eftlub 12034 bitsfzo 12299 bitsinv1 12306 ialgr0 12399 eucalg 12414 pw2dvds 12521 eulerthlemrprm 12584 oddprm 12615 pcfac 12706 pcbc 12707 ennnfonelem1 12811 gsumfzconst 13710 lmconst 14721 2logb9irr 15476 sqrt2cxp2logb9e3 15480 2logb9irrap 15482 lgseisenlem4 15583 lgsquadlem1 15587 lgsquad2 15593 cvgcmp2nlemabs 16008 trilpolemlt1 16017 |
| Copyright terms: Public domain | W3C validator |