| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzid | GIF version | ||
| Description: Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| Ref | Expression |
|---|---|
| uzid | ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 9411 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 2 | 1 | leidd 8622 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ≤ 𝑀) |
| 3 | 2 | ancli 323 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀)) |
| 4 | eluz1 9687 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀))) | |
| 5 | 3, 4 | mpbird 167 | 1 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2178 class class class wbr 4059 ‘cfv 5290 ≤ cle 8143 ℤcz 9407 ℤ≥cuz 9683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltirr 8072 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-ov 5970 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-neg 8281 df-z 9408 df-uz 9684 |
| This theorem is referenced by: uzidd 9698 uzn0 9699 uz11 9706 eluzfz1 10188 eluzfz2 10189 elfz3 10191 elfz1end 10212 fzssp1 10224 fzpred 10227 fzp1ss 10230 fzpr 10234 fztp 10235 elfz0add 10277 fzolb 10311 zpnn0elfzo 10373 fzosplitsnm1 10375 fzofzp1 10393 fzosplitsn 10399 fzostep1 10403 zsupcllemstep 10409 zsupcllemex 10410 frec2uzuzd 10584 frecuzrdgrrn 10590 frec2uzrdg 10591 frecuzrdgrcl 10592 frecuzrdgsuc 10596 frecuzrdgrclt 10597 frecuzrdgg 10598 frecuzrdgsuctlem 10605 uzsinds 10626 seq3val 10642 seqvalcd 10643 seq3-1 10644 seqf 10646 seq3p1 10647 seq3fveq 10661 seq3-1p 10672 seq3caopr3 10673 iseqf1olemjpcl 10690 iseqf1olemqpcl 10691 seq3f1oleml 10698 seq3f1o 10699 seq3homo 10709 faclbnd3 10925 bcm1k 10942 bcn2 10946 seq3coll 11024 swrds1 11159 pfxccatpfx2 11228 rexuz3 11416 r19.2uz 11419 resqrexlemcvg 11445 resqrexlemgt0 11446 resqrexlemoverl 11447 cau3lem 11540 caubnd2 11543 climconst 11716 climuni 11719 climcau 11773 serf0 11778 fsumparts 11896 isum1p 11918 isumrpcl 11920 cvgratz 11958 mertenslemi1 11961 ntrivcvgap0 11975 fprodabs 12042 eftlub 12116 bitsfzo 12381 bitsinv1 12388 ialgr0 12481 eucalg 12496 pw2dvds 12603 eulerthlemrprm 12666 oddprm 12697 pcfac 12788 pcbc 12789 ennnfonelem1 12893 gsumfzconst 13792 lmconst 14803 2logb9irr 15558 sqrt2cxp2logb9e3 15562 2logb9irrap 15564 lgseisenlem4 15665 lgsquadlem1 15669 lgsquad2 15675 cvgcmp2nlemabs 16173 trilpolemlt1 16182 |
| Copyright terms: Public domain | W3C validator |