| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzid | GIF version | ||
| Description: Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| Ref | Expression |
|---|---|
| uzid | ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 9458 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 2 | 1 | leidd 8669 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ≤ 𝑀) |
| 3 | 2 | ancli 323 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀)) |
| 4 | eluz1 9734 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀))) | |
| 5 | 3, 4 | mpbird 167 | 1 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 class class class wbr 4083 ‘cfv 5318 ≤ cle 8190 ℤcz 9454 ℤ≥cuz 9730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-pre-ltirr 8119 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6010 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-neg 8328 df-z 9455 df-uz 9731 |
| This theorem is referenced by: uzidd 9745 uzn0 9746 uz11 9753 eluzfz1 10235 eluzfz2 10236 elfz3 10238 elfz1end 10259 fzssp1 10271 fzpred 10274 fzp1ss 10277 fzpr 10281 fztp 10282 elfz0add 10324 fzolb 10358 zpnn0elfzo 10421 fzosplitsnm1 10423 fzofzp1 10441 fzosplitsn 10447 fzostep1 10451 zsupcllemstep 10457 zsupcllemex 10458 frec2uzuzd 10632 frecuzrdgrrn 10638 frec2uzrdg 10639 frecuzrdgrcl 10640 frecuzrdgsuc 10644 frecuzrdgrclt 10645 frecuzrdgg 10646 frecuzrdgsuctlem 10653 uzsinds 10674 seq3val 10690 seqvalcd 10691 seq3-1 10692 seqf 10694 seq3p1 10695 seq3fveq 10709 seq3-1p 10720 seq3caopr3 10721 iseqf1olemjpcl 10738 iseqf1olemqpcl 10739 seq3f1oleml 10746 seq3f1o 10747 seq3homo 10757 faclbnd3 10973 bcm1k 10990 bcn2 10994 seq3coll 11072 swrds1 11208 pfxccatpfx2 11277 rexuz3 11509 r19.2uz 11512 resqrexlemcvg 11538 resqrexlemgt0 11539 resqrexlemoverl 11540 cau3lem 11633 caubnd2 11636 climconst 11809 climuni 11812 climcau 11866 serf0 11871 fsumparts 11989 isum1p 12011 isumrpcl 12013 cvgratz 12051 mertenslemi1 12054 ntrivcvgap0 12068 fprodabs 12135 eftlub 12209 bitsfzo 12474 bitsinv1 12481 ialgr0 12574 eucalg 12589 pw2dvds 12696 eulerthlemrprm 12759 oddprm 12790 pcfac 12881 pcbc 12882 ennnfonelem1 12986 gsumfzconst 13886 lmconst 14898 2logb9irr 15653 sqrt2cxp2logb9e3 15657 2logb9irrap 15659 lgseisenlem4 15760 lgsquadlem1 15764 lgsquad2 15770 cvgcmp2nlemabs 16430 trilpolemlt1 16439 |
| Copyright terms: Public domain | W3C validator |