| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzid | GIF version | ||
| Description: Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| Ref | Expression |
|---|---|
| uzid | ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 9347 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 2 | 1 | leidd 8558 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ≤ 𝑀) |
| 3 | 2 | ancli 323 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀)) |
| 4 | eluz1 9622 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀))) | |
| 5 | 3, 4 | mpbird 167 | 1 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 ≤ cle 8079 ℤcz 9343 ℤ≥cuz 9618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-pre-ltirr 8008 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-neg 8217 df-z 9344 df-uz 9619 |
| This theorem is referenced by: uzidd 9633 uzn0 9634 uz11 9641 eluzfz1 10123 eluzfz2 10124 elfz3 10126 elfz1end 10147 fzssp1 10159 fzpred 10162 fzp1ss 10165 fzpr 10169 fztp 10170 elfz0add 10212 fzolb 10246 zpnn0elfzo 10300 fzosplitsnm1 10302 fzofzp1 10320 fzosplitsn 10326 fzostep1 10330 zsupcllemstep 10336 zsupcllemex 10337 frec2uzuzd 10511 frecuzrdgrrn 10517 frec2uzrdg 10518 frecuzrdgrcl 10519 frecuzrdgsuc 10523 frecuzrdgrclt 10524 frecuzrdgg 10525 frecuzrdgsuctlem 10532 uzsinds 10553 seq3val 10569 seqvalcd 10570 seq3-1 10571 seqf 10573 seq3p1 10574 seq3fveq 10588 seq3-1p 10599 seq3caopr3 10600 iseqf1olemjpcl 10617 iseqf1olemqpcl 10618 seq3f1oleml 10625 seq3f1o 10626 seq3homo 10636 faclbnd3 10852 bcm1k 10869 bcn2 10873 seq3coll 10951 rexuz3 11172 r19.2uz 11175 resqrexlemcvg 11201 resqrexlemgt0 11202 resqrexlemoverl 11203 cau3lem 11296 caubnd2 11299 climconst 11472 climuni 11475 climcau 11529 serf0 11534 fsumparts 11652 isum1p 11674 isumrpcl 11676 cvgratz 11714 mertenslemi1 11717 ntrivcvgap0 11731 fprodabs 11798 eftlub 11872 bitsfzo 12137 bitsinv1 12144 ialgr0 12237 eucalg 12252 pw2dvds 12359 eulerthlemrprm 12422 oddprm 12453 pcfac 12544 pcbc 12545 ennnfonelem1 12649 gsumfzconst 13547 lmconst 14536 2logb9irr 15291 sqrt2cxp2logb9e3 15295 2logb9irrap 15297 lgseisenlem4 15398 lgsquadlem1 15402 lgsquad2 15408 cvgcmp2nlemabs 15763 trilpolemlt1 15772 |
| Copyright terms: Public domain | W3C validator |