| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzid | GIF version | ||
| Description: Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| Ref | Expression |
|---|---|
| uzid | ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 9376 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 2 | 1 | leidd 8587 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ≤ 𝑀) |
| 3 | 2 | ancli 323 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀)) |
| 4 | eluz1 9652 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀))) | |
| 5 | 3, 4 | mpbird 167 | 1 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2176 class class class wbr 4044 ‘cfv 5271 ≤ cle 8108 ℤcz 9372 ℤ≥cuz 9648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-pre-ltirr 8037 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-ov 5947 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-neg 8246 df-z 9373 df-uz 9649 |
| This theorem is referenced by: uzidd 9663 uzn0 9664 uz11 9671 eluzfz1 10153 eluzfz2 10154 elfz3 10156 elfz1end 10177 fzssp1 10189 fzpred 10192 fzp1ss 10195 fzpr 10199 fztp 10200 elfz0add 10242 fzolb 10276 zpnn0elfzo 10336 fzosplitsnm1 10338 fzofzp1 10356 fzosplitsn 10362 fzostep1 10366 zsupcllemstep 10372 zsupcllemex 10373 frec2uzuzd 10547 frecuzrdgrrn 10553 frec2uzrdg 10554 frecuzrdgrcl 10555 frecuzrdgsuc 10559 frecuzrdgrclt 10560 frecuzrdgg 10561 frecuzrdgsuctlem 10568 uzsinds 10589 seq3val 10605 seqvalcd 10606 seq3-1 10607 seqf 10609 seq3p1 10610 seq3fveq 10624 seq3-1p 10635 seq3caopr3 10636 iseqf1olemjpcl 10653 iseqf1olemqpcl 10654 seq3f1oleml 10661 seq3f1o 10662 seq3homo 10672 faclbnd3 10888 bcm1k 10905 bcn2 10909 seq3coll 10987 swrds1 11121 rexuz3 11301 r19.2uz 11304 resqrexlemcvg 11330 resqrexlemgt0 11331 resqrexlemoverl 11332 cau3lem 11425 caubnd2 11428 climconst 11601 climuni 11604 climcau 11658 serf0 11663 fsumparts 11781 isum1p 11803 isumrpcl 11805 cvgratz 11843 mertenslemi1 11846 ntrivcvgap0 11860 fprodabs 11927 eftlub 12001 bitsfzo 12266 bitsinv1 12273 ialgr0 12366 eucalg 12381 pw2dvds 12488 eulerthlemrprm 12551 oddprm 12582 pcfac 12673 pcbc 12674 ennnfonelem1 12778 gsumfzconst 13677 lmconst 14688 2logb9irr 15443 sqrt2cxp2logb9e3 15447 2logb9irrap 15449 lgseisenlem4 15550 lgsquadlem1 15554 lgsquad2 15560 cvgcmp2nlemabs 15975 trilpolemlt1 15984 |
| Copyright terms: Public domain | W3C validator |