![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uzid | GIF version |
Description: Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
Ref | Expression |
---|---|
uzid | ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9321 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
2 | 1 | leidd 8533 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ≤ 𝑀) |
3 | 2 | ancli 323 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀)) |
4 | eluz1 9596 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀))) | |
5 | 3, 4 | mpbird 167 | 1 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 ≤ cle 8055 ℤcz 9317 ℤ≥cuz 9592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-pre-ltirr 7984 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-ov 5921 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-neg 8193 df-z 9318 df-uz 9593 |
This theorem is referenced by: uzidd 9607 uzn0 9608 uz11 9615 eluzfz1 10097 eluzfz2 10098 elfz3 10100 elfz1end 10121 fzssp1 10133 fzpred 10136 fzp1ss 10139 fzpr 10143 fztp 10144 elfz0add 10186 fzolb 10220 zpnn0elfzo 10274 fzosplitsnm1 10276 fzofzp1 10294 fzosplitsn 10300 fzostep1 10304 frec2uzuzd 10473 frecuzrdgrrn 10479 frec2uzrdg 10480 frecuzrdgrcl 10481 frecuzrdgsuc 10485 frecuzrdgrclt 10486 frecuzrdgg 10487 frecuzrdgsuctlem 10494 uzsinds 10515 seq3val 10531 seqvalcd 10532 seq3-1 10533 seqf 10535 seq3p1 10536 seq3fveq 10550 seq3-1p 10561 seq3caopr3 10562 iseqf1olemjpcl 10579 iseqf1olemqpcl 10580 seq3f1oleml 10587 seq3f1o 10588 seq3homo 10598 faclbnd3 10814 bcm1k 10831 bcn2 10835 seq3coll 10913 rexuz3 11134 r19.2uz 11137 resqrexlemcvg 11163 resqrexlemgt0 11164 resqrexlemoverl 11165 cau3lem 11258 caubnd2 11261 climconst 11433 climuni 11436 climcau 11490 serf0 11495 fsumparts 11613 isum1p 11635 isumrpcl 11637 cvgratz 11675 mertenslemi1 11678 ntrivcvgap0 11692 fprodabs 11759 eftlub 11833 zsupcllemstep 12082 zsupcllemex 12083 ialgr0 12182 eucalg 12197 pw2dvds 12304 eulerthlemrprm 12367 oddprm 12397 pcfac 12488 pcbc 12489 ennnfonelem1 12564 gsumfzconst 13411 lmconst 14384 2logb9irr 15103 sqrt2cxp2logb9e3 15107 2logb9irrap 15109 lgseisenlem4 15189 lgsquadlem1 15191 cvgcmp2nlemabs 15522 trilpolemlt1 15531 |
Copyright terms: Public domain | W3C validator |