![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uzid | GIF version |
Description: Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
Ref | Expression |
---|---|
uzid | ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 8956 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
2 | 1 | leidd 8189 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ≤ 𝑀) |
3 | 2 | ancli 319 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀)) |
4 | eluz1 9226 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀))) | |
5 | 3, 4 | mpbird 166 | 1 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 1461 class class class wbr 3893 ‘cfv 5079 ≤ cle 7719 ℤcz 8952 ℤ≥cuz 9222 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-cnex 7630 ax-resscn 7631 ax-pre-ltirr 7651 |
This theorem depends on definitions: df-bi 116 df-3or 944 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-rab 2397 df-v 2657 df-sbc 2877 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-opab 3948 df-mpt 3949 df-id 4173 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-iota 5044 df-fun 5081 df-fv 5087 df-ov 5729 df-pnf 7720 df-mnf 7721 df-xr 7722 df-ltxr 7723 df-le 7724 df-neg 7853 df-z 8953 df-uz 9223 |
This theorem is referenced by: uzn0 9237 uz11 9244 eluzfz1 9698 eluzfz2 9699 elfz3 9701 elfz1end 9722 fzssp1 9734 fzpred 9737 fzp1ss 9740 fzpr 9744 fztp 9745 elfz0add 9787 fzolb 9817 zpnn0elfzo 9871 fzosplitsnm1 9873 fzofzp1 9891 fzosplitsn 9897 fzostep1 9901 frec2uzuzd 10062 frecuzrdgrrn 10068 frec2uzrdg 10069 frecuzrdgrcl 10070 frecuzrdgsuc 10074 frecuzrdgrclt 10075 frecuzrdgg 10076 frecuzrdgsuctlem 10083 uzsinds 10102 seq3val 10118 seqvalcd 10119 seq3-1 10120 seqf 10121 seq3p1 10122 seq3fveq 10131 seq3-1p 10140 seq3caopr3 10141 iseqf1olemjpcl 10155 iseqf1olemqpcl 10156 seq3f1oleml 10163 seq3f1o 10164 seq3homo 10170 faclbnd3 10376 bcm1k 10393 bcn2 10397 seq3coll 10472 rexuz3 10648 r19.2uz 10651 resqrexlemcvg 10677 resqrexlemgt0 10678 resqrexlemoverl 10679 cau3lem 10772 caubnd2 10775 climconst 10945 climuni 10948 climcau 11002 serf0 11007 fsumparts 11125 isum1p 11147 isumrpcl 11149 cvgratz 11187 mertenslemi1 11190 eftlub 11241 zsupcllemstep 11480 zsupcllemex 11481 ialgr0 11565 eucalg 11580 pw2dvds 11683 ennnfonelem1 11759 lmconst 12221 cvgcmp2nlemabs 12908 trilpolemlt1 12915 |
Copyright terms: Public domain | W3C validator |