Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uzid | GIF version |
Description: Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
Ref | Expression |
---|---|
uzid | ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9195 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
2 | 1 | leidd 8412 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ≤ 𝑀) |
3 | 2 | ancli 321 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀)) |
4 | eluz1 9470 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀))) | |
5 | 3, 4 | mpbird 166 | 1 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 class class class wbr 3982 ‘cfv 5188 ≤ cle 7934 ℤcz 9191 ℤ≥cuz 9466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-neg 8072 df-z 9192 df-uz 9467 |
This theorem is referenced by: uzn0 9481 uz11 9488 eluzfz1 9966 eluzfz2 9967 elfz3 9969 elfz1end 9990 fzssp1 10002 fzpred 10005 fzp1ss 10008 fzpr 10012 fztp 10013 elfz0add 10055 fzolb 10088 zpnn0elfzo 10142 fzosplitsnm1 10144 fzofzp1 10162 fzosplitsn 10168 fzostep1 10172 frec2uzuzd 10337 frecuzrdgrrn 10343 frec2uzrdg 10344 frecuzrdgrcl 10345 frecuzrdgsuc 10349 frecuzrdgrclt 10350 frecuzrdgg 10351 frecuzrdgsuctlem 10358 uzsinds 10377 seq3val 10393 seqvalcd 10394 seq3-1 10395 seqf 10396 seq3p1 10397 seq3fveq 10406 seq3-1p 10415 seq3caopr3 10416 iseqf1olemjpcl 10430 iseqf1olemqpcl 10431 seq3f1oleml 10438 seq3f1o 10439 seq3homo 10445 faclbnd3 10656 bcm1k 10673 bcn2 10677 seq3coll 10755 rexuz3 10932 r19.2uz 10935 resqrexlemcvg 10961 resqrexlemgt0 10962 resqrexlemoverl 10963 cau3lem 11056 caubnd2 11059 climconst 11231 climuni 11234 climcau 11288 serf0 11293 fsumparts 11411 isum1p 11433 isumrpcl 11435 cvgratz 11473 mertenslemi1 11476 ntrivcvgap0 11490 fprodabs 11557 eftlub 11631 zsupcllemstep 11878 zsupcllemex 11879 ialgr0 11976 eucalg 11991 pw2dvds 12098 eulerthlemrprm 12161 oddprm 12191 pcfac 12280 pcbc 12281 ennnfonelem1 12340 lmconst 12856 2logb9irr 13529 sqrt2cxp2logb9e3 13533 2logb9irrap 13535 cvgcmp2nlemabs 13911 trilpolemlt1 13920 |
Copyright terms: Public domain | W3C validator |