Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uzid | GIF version |
Description: Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
Ref | Expression |
---|---|
uzid | ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9216 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
2 | 1 | leidd 8433 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ≤ 𝑀) |
3 | 2 | ancli 321 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀)) |
4 | eluz1 9491 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑀 ≤ 𝑀))) | |
5 | 3, 4 | mpbird 166 | 1 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 class class class wbr 3989 ‘cfv 5198 ≤ cle 7955 ℤcz 9212 ℤ≥cuz 9487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-neg 8093 df-z 9213 df-uz 9488 |
This theorem is referenced by: uzn0 9502 uz11 9509 eluzfz1 9987 eluzfz2 9988 elfz3 9990 elfz1end 10011 fzssp1 10023 fzpred 10026 fzp1ss 10029 fzpr 10033 fztp 10034 elfz0add 10076 fzolb 10109 zpnn0elfzo 10163 fzosplitsnm1 10165 fzofzp1 10183 fzosplitsn 10189 fzostep1 10193 frec2uzuzd 10358 frecuzrdgrrn 10364 frec2uzrdg 10365 frecuzrdgrcl 10366 frecuzrdgsuc 10370 frecuzrdgrclt 10371 frecuzrdgg 10372 frecuzrdgsuctlem 10379 uzsinds 10398 seq3val 10414 seqvalcd 10415 seq3-1 10416 seqf 10417 seq3p1 10418 seq3fveq 10427 seq3-1p 10436 seq3caopr3 10437 iseqf1olemjpcl 10451 iseqf1olemqpcl 10452 seq3f1oleml 10459 seq3f1o 10460 seq3homo 10466 faclbnd3 10677 bcm1k 10694 bcn2 10698 seq3coll 10777 rexuz3 10954 r19.2uz 10957 resqrexlemcvg 10983 resqrexlemgt0 10984 resqrexlemoverl 10985 cau3lem 11078 caubnd2 11081 climconst 11253 climuni 11256 climcau 11310 serf0 11315 fsumparts 11433 isum1p 11455 isumrpcl 11457 cvgratz 11495 mertenslemi1 11498 ntrivcvgap0 11512 fprodabs 11579 eftlub 11653 zsupcllemstep 11900 zsupcllemex 11901 ialgr0 11998 eucalg 12013 pw2dvds 12120 eulerthlemrprm 12183 oddprm 12213 pcfac 12302 pcbc 12303 ennnfonelem1 12362 lmconst 13010 2logb9irr 13683 sqrt2cxp2logb9e3 13687 2logb9irrap 13689 cvgcmp2nlemabs 14064 trilpolemlt1 14073 |
Copyright terms: Public domain | W3C validator |