ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qreccl GIF version

Theorem qreccl 9719
Description: Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
qreccl ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℚ)

Proof of Theorem qreccl
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1cn 7975 . . . . . 6 1 ∈ ℂ
2 1ap0 8620 . . . . . 6 1 # 0
31, 2div0api 8776 . . . . 5 (0 / 1) = 0
4 0z 9340 . . . . . 6 0 ∈ ℤ
5 1nn 9004 . . . . . 6 1 ∈ ℕ
6 znq 9701 . . . . . 6 ((0 ∈ ℤ ∧ 1 ∈ ℕ) → (0 / 1) ∈ ℚ)
74, 5, 6mp2an 426 . . . . 5 (0 / 1) ∈ ℚ
83, 7eqeltrri 2270 . . . 4 0 ∈ ℚ
9 qapne 9716 . . . 4 ((𝐴 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐴 # 0 ↔ 𝐴 ≠ 0))
108, 9mpan2 425 . . 3 (𝐴 ∈ ℚ → (𝐴 # 0 ↔ 𝐴 ≠ 0))
1110biimpar 297 . 2 ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) → 𝐴 # 0)
12 elq 9699 . . . 4 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
13 nnne0 9021 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
1413ancli 323 . . . . . . 7 (𝑦 ∈ ℕ → (𝑦 ∈ ℕ ∧ 𝑦 ≠ 0))
15 nnz 9348 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
16 zapne 9403 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑦 # 0 ↔ 𝑦 ≠ 0))
1715, 4, 16sylancl 413 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (𝑦 # 0 ↔ 𝑦 ≠ 0))
1817adantl 277 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑦 # 0 ↔ 𝑦 ≠ 0))
1918pm5.32i 454 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ↔ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0))
2019anbi1i 458 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ∧ 𝐴 = (𝑥 / 𝑦)) ↔ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)))
21 breq1 4037 . . . . . . . . . . . . 13 (𝐴 = (𝑥 / 𝑦) → (𝐴 # 0 ↔ (𝑥 / 𝑦) # 0))
22 zcn 9334 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
23 nncn 9001 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
2422, 23anim12i 338 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ))
25 divap0b 8713 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 # 0) → (𝑥 # 0 ↔ (𝑥 / 𝑦) # 0))
26253expa 1205 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑦 # 0) → (𝑥 # 0 ↔ (𝑥 / 𝑦) # 0))
2724, 26sylan 283 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) → (𝑥 # 0 ↔ (𝑥 / 𝑦) # 0))
2827bicomd 141 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) → ((𝑥 / 𝑦) # 0 ↔ 𝑥 # 0))
2921, 28sylan9bbr 463 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 0 ↔ 𝑥 # 0))
3020, 29sylbir 135 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 0 ↔ 𝑥 # 0))
31 simplll 533 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑥 ∈ ℤ)
32 zapne 9403 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑥 # 0 ↔ 𝑥 ≠ 0))
3331, 4, 32sylancl 413 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 # 0 ↔ 𝑥 ≠ 0))
3430, 33bitrd 188 . . . . . . . . . 10 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 0 ↔ 𝑥 ≠ 0))
35 zmulcl 9382 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
3615, 35sylan2 286 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 · 𝑦) ∈ ℤ)
3736adantr 276 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (𝑥 · 𝑦) ∈ ℤ)
38 msqznn 9429 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) → (𝑥 · 𝑥) ∈ ℕ)
3938adantlr 477 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (𝑥 · 𝑥) ∈ ℕ)
4037, 39jca 306 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → ((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ))
4140adantlr 477 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝑥 ≠ 0) → ((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ))
4241adantlr 477 . . . . . . . . . . . 12 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 ≠ 0) → ((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ))
4320anbi1i 458 . . . . . . . . . . . . . 14 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 # 0) ↔ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 # 0))
4433pm5.32i 454 . . . . . . . . . . . . . 14 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 # 0) ↔ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 ≠ 0))
4543, 44bitri 184 . . . . . . . . . . . . 13 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 # 0) ↔ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 ≠ 0))
46 oveq2 5931 . . . . . . . . . . . . . . 15 (𝐴 = (𝑥 / 𝑦) → (1 / 𝐴) = (1 / (𝑥 / 𝑦)))
47 dividap 8731 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (𝑥 / 𝑥) = 1)
4847adantr 276 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 / 𝑥) = 1)
4948oveq1d 5938 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → ((𝑥 / 𝑥) / (𝑥 / 𝑦)) = (1 / (𝑥 / 𝑦)))
50 simpll 527 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → 𝑥 ∈ ℂ)
51 simpl 109 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
52 simpr 110 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑦 ∈ ℂ ∧ 𝑦 # 0))
53 divdivdivap 8743 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 # 0)) ∧ ((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0))) → ((𝑥 / 𝑥) / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
5450, 51, 51, 52, 53syl22anc 1250 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → ((𝑥 / 𝑥) / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
5549, 54eqtr3d 2231 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (1 / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
5655an4s 588 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ (𝑥 # 0 ∧ 𝑦 # 0)) → (1 / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
5724, 56sylan 283 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑥 # 0 ∧ 𝑦 # 0)) → (1 / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
5857anass1rs 571 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ∧ 𝑥 # 0) → (1 / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
5946, 58sylan9eqr 2251 . . . . . . . . . . . . . 14 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ∧ 𝑥 # 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
6059an32s 568 . . . . . . . . . . . . 13 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 # 0) → (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
6145, 60sylbir 135 . . . . . . . . . . . 12 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 ≠ 0) → (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
6242, 61jca 306 . . . . . . . . . . 11 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 ≠ 0) → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))))
6362ex 115 . . . . . . . . . 10 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 ≠ 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))))
6434, 63sylbid 150 . . . . . . . . 9 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))))
6564ex 115 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) → (𝐴 = (𝑥 / 𝑦) → (𝐴 # 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))))))
6665anasss 399 . . . . . . 7 ((𝑥 ∈ ℤ ∧ (𝑦 ∈ ℕ ∧ 𝑦 ≠ 0)) → (𝐴 = (𝑥 / 𝑦) → (𝐴 # 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))))))
6714, 66sylan2 286 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → (𝐴 # 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))))))
68 rspceov 5966 . . . . . . . 8 (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ (1 / 𝐴) = (𝑧 / 𝑤))
69683expa 1205 . . . . . . 7 ((((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ (1 / 𝐴) = (𝑧 / 𝑤))
70 elq 9699 . . . . . . 7 ((1 / 𝐴) ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ (1 / 𝐴) = (𝑧 / 𝑤))
7169, 70sylibr 134 . . . . . 6 ((((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))) → (1 / 𝐴) ∈ ℚ)
7267, 71syl8 71 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → (𝐴 # 0 → (1 / 𝐴) ∈ ℚ)))
7372rexlimivv 2620 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (𝐴 # 0 → (1 / 𝐴) ∈ ℚ))
7412, 73sylbi 121 . . 3 (𝐴 ∈ ℚ → (𝐴 # 0 → (1 / 𝐴) ∈ ℚ))
7574imp 124 . 2 ((𝐴 ∈ ℚ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℚ)
7611, 75syldan 282 1 ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℚ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wne 2367  wrex 2476   class class class wbr 4034  (class class class)co 5923  cc 7880  0cc0 7882  1c1 7883   · cmul 7887   # cap 8611   / cdiv 8702  cn 8993  cz 9329  cq 9696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999  ax-pre-mulext 8000
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6200  df-2nd 6201  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612  df-div 8703  df-inn 8994  df-n0 9253  df-z 9330  df-q 9697
This theorem is referenced by:  qdivcl  9720  qexpclz  10655
  Copyright terms: Public domain W3C validator