ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qreccl GIF version

Theorem qreccl 9776
Description: Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
qreccl ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℚ)

Proof of Theorem qreccl
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1cn 8031 . . . . . 6 1 ∈ ℂ
2 1ap0 8676 . . . . . 6 1 # 0
31, 2div0api 8832 . . . . 5 (0 / 1) = 0
4 0z 9396 . . . . . 6 0 ∈ ℤ
5 1nn 9060 . . . . . 6 1 ∈ ℕ
6 znq 9758 . . . . . 6 ((0 ∈ ℤ ∧ 1 ∈ ℕ) → (0 / 1) ∈ ℚ)
74, 5, 6mp2an 426 . . . . 5 (0 / 1) ∈ ℚ
83, 7eqeltrri 2280 . . . 4 0 ∈ ℚ
9 qapne 9773 . . . 4 ((𝐴 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐴 # 0 ↔ 𝐴 ≠ 0))
108, 9mpan2 425 . . 3 (𝐴 ∈ ℚ → (𝐴 # 0 ↔ 𝐴 ≠ 0))
1110biimpar 297 . 2 ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) → 𝐴 # 0)
12 elq 9756 . . . 4 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
13 nnne0 9077 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
1413ancli 323 . . . . . . 7 (𝑦 ∈ ℕ → (𝑦 ∈ ℕ ∧ 𝑦 ≠ 0))
15 nnz 9404 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
16 zapne 9460 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑦 # 0 ↔ 𝑦 ≠ 0))
1715, 4, 16sylancl 413 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (𝑦 # 0 ↔ 𝑦 ≠ 0))
1817adantl 277 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑦 # 0 ↔ 𝑦 ≠ 0))
1918pm5.32i 454 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ↔ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0))
2019anbi1i 458 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ∧ 𝐴 = (𝑥 / 𝑦)) ↔ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)))
21 breq1 4051 . . . . . . . . . . . . 13 (𝐴 = (𝑥 / 𝑦) → (𝐴 # 0 ↔ (𝑥 / 𝑦) # 0))
22 zcn 9390 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
23 nncn 9057 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
2422, 23anim12i 338 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ))
25 divap0b 8769 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 # 0) → (𝑥 # 0 ↔ (𝑥 / 𝑦) # 0))
26253expa 1206 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑦 # 0) → (𝑥 # 0 ↔ (𝑥 / 𝑦) # 0))
2724, 26sylan 283 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) → (𝑥 # 0 ↔ (𝑥 / 𝑦) # 0))
2827bicomd 141 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) → ((𝑥 / 𝑦) # 0 ↔ 𝑥 # 0))
2921, 28sylan9bbr 463 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 0 ↔ 𝑥 # 0))
3020, 29sylbir 135 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 0 ↔ 𝑥 # 0))
31 simplll 533 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑥 ∈ ℤ)
32 zapne 9460 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑥 # 0 ↔ 𝑥 ≠ 0))
3331, 4, 32sylancl 413 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 # 0 ↔ 𝑥 ≠ 0))
3430, 33bitrd 188 . . . . . . . . . 10 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 0 ↔ 𝑥 ≠ 0))
35 zmulcl 9439 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
3615, 35sylan2 286 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 · 𝑦) ∈ ℤ)
3736adantr 276 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (𝑥 · 𝑦) ∈ ℤ)
38 msqznn 9486 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) → (𝑥 · 𝑥) ∈ ℕ)
3938adantlr 477 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (𝑥 · 𝑥) ∈ ℕ)
4037, 39jca 306 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → ((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ))
4140adantlr 477 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝑥 ≠ 0) → ((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ))
4241adantlr 477 . . . . . . . . . . . 12 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 ≠ 0) → ((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ))
4320anbi1i 458 . . . . . . . . . . . . . 14 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 # 0) ↔ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 # 0))
4433pm5.32i 454 . . . . . . . . . . . . . 14 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 # 0) ↔ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 ≠ 0))
4543, 44bitri 184 . . . . . . . . . . . . 13 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 # 0) ↔ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 ≠ 0))
46 oveq2 5962 . . . . . . . . . . . . . . 15 (𝐴 = (𝑥 / 𝑦) → (1 / 𝐴) = (1 / (𝑥 / 𝑦)))
47 dividap 8787 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (𝑥 / 𝑥) = 1)
4847adantr 276 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 / 𝑥) = 1)
4948oveq1d 5969 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → ((𝑥 / 𝑥) / (𝑥 / 𝑦)) = (1 / (𝑥 / 𝑦)))
50 simpll 527 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → 𝑥 ∈ ℂ)
51 simpl 109 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
52 simpr 110 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑦 ∈ ℂ ∧ 𝑦 # 0))
53 divdivdivap 8799 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 # 0)) ∧ ((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0))) → ((𝑥 / 𝑥) / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
5450, 51, 51, 52, 53syl22anc 1251 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → ((𝑥 / 𝑥) / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
5549, 54eqtr3d 2241 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (1 / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
5655an4s 588 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ (𝑥 # 0 ∧ 𝑦 # 0)) → (1 / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
5724, 56sylan 283 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑥 # 0 ∧ 𝑦 # 0)) → (1 / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
5857anass1rs 571 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ∧ 𝑥 # 0) → (1 / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
5946, 58sylan9eqr 2261 . . . . . . . . . . . . . 14 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ∧ 𝑥 # 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
6059an32s 568 . . . . . . . . . . . . 13 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 # 0) → (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
6145, 60sylbir 135 . . . . . . . . . . . 12 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 ≠ 0) → (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
6242, 61jca 306 . . . . . . . . . . 11 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 ≠ 0) → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))))
6362ex 115 . . . . . . . . . 10 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 ≠ 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))))
6434, 63sylbid 150 . . . . . . . . 9 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))))
6564ex 115 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) → (𝐴 = (𝑥 / 𝑦) → (𝐴 # 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))))))
6665anasss 399 . . . . . . 7 ((𝑥 ∈ ℤ ∧ (𝑦 ∈ ℕ ∧ 𝑦 ≠ 0)) → (𝐴 = (𝑥 / 𝑦) → (𝐴 # 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))))))
6714, 66sylan2 286 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → (𝐴 # 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))))))
68 rspceov 5997 . . . . . . . 8 (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ (1 / 𝐴) = (𝑧 / 𝑤))
69683expa 1206 . . . . . . 7 ((((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ (1 / 𝐴) = (𝑧 / 𝑤))
70 elq 9756 . . . . . . 7 ((1 / 𝐴) ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ (1 / 𝐴) = (𝑧 / 𝑤))
7169, 70sylibr 134 . . . . . 6 ((((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))) → (1 / 𝐴) ∈ ℚ)
7267, 71syl8 71 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → (𝐴 # 0 → (1 / 𝐴) ∈ ℚ)))
7372rexlimivv 2630 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (𝐴 # 0 → (1 / 𝐴) ∈ ℚ))
7412, 73sylbi 121 . . 3 (𝐴 ∈ ℚ → (𝐴 # 0 → (1 / 𝐴) ∈ ℚ))
7574imp 124 . 2 ((𝐴 ∈ ℚ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℚ)
7611, 75syldan 282 1 ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℚ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wne 2377  wrex 2486   class class class wbr 4048  (class class class)co 5954  cc 7936  0cc0 7938  1c1 7939   · cmul 7943   # cap 8667   / cdiv 8758  cn 9049  cz 9385  cq 9753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-po 4348  df-iso 4349  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-n0 9309  df-z 9386  df-q 9754
This theorem is referenced by:  qdivcl  9777  qexpclz  10718
  Copyright terms: Public domain W3C validator