ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qreccl GIF version

Theorem qreccl 9580
Description: Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
qreccl ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℚ)

Proof of Theorem qreccl
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1cn 7846 . . . . . 6 1 ∈ ℂ
2 1ap0 8488 . . . . . 6 1 # 0
31, 2div0api 8642 . . . . 5 (0 / 1) = 0
4 0z 9202 . . . . . 6 0 ∈ ℤ
5 1nn 8868 . . . . . 6 1 ∈ ℕ
6 znq 9562 . . . . . 6 ((0 ∈ ℤ ∧ 1 ∈ ℕ) → (0 / 1) ∈ ℚ)
74, 5, 6mp2an 423 . . . . 5 (0 / 1) ∈ ℚ
83, 7eqeltrri 2240 . . . 4 0 ∈ ℚ
9 qapne 9577 . . . 4 ((𝐴 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐴 # 0 ↔ 𝐴 ≠ 0))
108, 9mpan2 422 . . 3 (𝐴 ∈ ℚ → (𝐴 # 0 ↔ 𝐴 ≠ 0))
1110biimpar 295 . 2 ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) → 𝐴 # 0)
12 elq 9560 . . . 4 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
13 nnne0 8885 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
1413ancli 321 . . . . . . 7 (𝑦 ∈ ℕ → (𝑦 ∈ ℕ ∧ 𝑦 ≠ 0))
15 nnz 9210 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
16 zapne 9265 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑦 # 0 ↔ 𝑦 ≠ 0))
1715, 4, 16sylancl 410 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (𝑦 # 0 ↔ 𝑦 ≠ 0))
1817adantl 275 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑦 # 0 ↔ 𝑦 ≠ 0))
1918pm5.32i 450 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ↔ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0))
2019anbi1i 454 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ∧ 𝐴 = (𝑥 / 𝑦)) ↔ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)))
21 breq1 3985 . . . . . . . . . . . . 13 (𝐴 = (𝑥 / 𝑦) → (𝐴 # 0 ↔ (𝑥 / 𝑦) # 0))
22 zcn 9196 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
23 nncn 8865 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
2422, 23anim12i 336 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ))
25 divap0b 8579 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 # 0) → (𝑥 # 0 ↔ (𝑥 / 𝑦) # 0))
26253expa 1193 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑦 # 0) → (𝑥 # 0 ↔ (𝑥 / 𝑦) # 0))
2724, 26sylan 281 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) → (𝑥 # 0 ↔ (𝑥 / 𝑦) # 0))
2827bicomd 140 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) → ((𝑥 / 𝑦) # 0 ↔ 𝑥 # 0))
2921, 28sylan9bbr 459 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 0 ↔ 𝑥 # 0))
3020, 29sylbir 134 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 0 ↔ 𝑥 # 0))
31 simplll 523 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑥 ∈ ℤ)
32 zapne 9265 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑥 # 0 ↔ 𝑥 ≠ 0))
3331, 4, 32sylancl 410 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 # 0 ↔ 𝑥 ≠ 0))
3430, 33bitrd 187 . . . . . . . . . 10 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 0 ↔ 𝑥 ≠ 0))
35 zmulcl 9244 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
3615, 35sylan2 284 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 · 𝑦) ∈ ℤ)
3736adantr 274 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (𝑥 · 𝑦) ∈ ℤ)
38 msqznn 9291 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) → (𝑥 · 𝑥) ∈ ℕ)
3938adantlr 469 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (𝑥 · 𝑥) ∈ ℕ)
4037, 39jca 304 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → ((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ))
4140adantlr 469 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝑥 ≠ 0) → ((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ))
4241adantlr 469 . . . . . . . . . . . 12 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 ≠ 0) → ((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ))
4320anbi1i 454 . . . . . . . . . . . . . 14 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 # 0) ↔ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 # 0))
4433pm5.32i 450 . . . . . . . . . . . . . 14 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 # 0) ↔ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 ≠ 0))
4543, 44bitri 183 . . . . . . . . . . . . 13 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 # 0) ↔ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 ≠ 0))
46 oveq2 5850 . . . . . . . . . . . . . . 15 (𝐴 = (𝑥 / 𝑦) → (1 / 𝐴) = (1 / (𝑥 / 𝑦)))
47 dividap 8597 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (𝑥 / 𝑥) = 1)
4847adantr 274 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 / 𝑥) = 1)
4948oveq1d 5857 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → ((𝑥 / 𝑥) / (𝑥 / 𝑦)) = (1 / (𝑥 / 𝑦)))
50 simpll 519 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → 𝑥 ∈ ℂ)
51 simpl 108 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
52 simpr 109 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑦 ∈ ℂ ∧ 𝑦 # 0))
53 divdivdivap 8609 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 # 0)) ∧ ((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0))) → ((𝑥 / 𝑥) / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
5450, 51, 51, 52, 53syl22anc 1229 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → ((𝑥 / 𝑥) / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
5549, 54eqtr3d 2200 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (1 / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
5655an4s 578 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ (𝑥 # 0 ∧ 𝑦 # 0)) → (1 / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
5724, 56sylan 281 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑥 # 0 ∧ 𝑦 # 0)) → (1 / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
5857anass1rs 561 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ∧ 𝑥 # 0) → (1 / (𝑥 / 𝑦)) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
5946, 58sylan9eqr 2221 . . . . . . . . . . . . . 14 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ∧ 𝑥 # 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
6059an32s 558 . . . . . . . . . . . . 13 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 # 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 # 0) → (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
6145, 60sylbir 134 . . . . . . . . . . . 12 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 ≠ 0) → (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))
6242, 61jca 304 . . . . . . . . . . 11 (((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ 𝑥 ≠ 0) → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))))
6362ex 114 . . . . . . . . . 10 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 ≠ 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))))
6434, 63sylbid 149 . . . . . . . . 9 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥)))))
6564ex 114 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 ≠ 0) → (𝐴 = (𝑥 / 𝑦) → (𝐴 # 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))))))
6665anasss 397 . . . . . . 7 ((𝑥 ∈ ℤ ∧ (𝑦 ∈ ℕ ∧ 𝑦 ≠ 0)) → (𝐴 = (𝑥 / 𝑦) → (𝐴 # 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))))))
6714, 66sylan2 284 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → (𝐴 # 0 → (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))))))
68 rspceov 5884 . . . . . . . 8 (((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ (1 / 𝐴) = (𝑧 / 𝑤))
69683expa 1193 . . . . . . 7 ((((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ (1 / 𝐴) = (𝑧 / 𝑤))
70 elq 9560 . . . . . . 7 ((1 / 𝐴) ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ (1 / 𝐴) = (𝑧 / 𝑤))
7169, 70sylibr 133 . . . . . 6 ((((𝑥 · 𝑦) ∈ ℤ ∧ (𝑥 · 𝑥) ∈ ℕ) ∧ (1 / 𝐴) = ((𝑥 · 𝑦) / (𝑥 · 𝑥))) → (1 / 𝐴) ∈ ℚ)
7267, 71syl8 71 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → (𝐴 # 0 → (1 / 𝐴) ∈ ℚ)))
7372rexlimivv 2589 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (𝐴 # 0 → (1 / 𝐴) ∈ ℚ))
7412, 73sylbi 120 . . 3 (𝐴 ∈ ℚ → (𝐴 # 0 → (1 / 𝐴) ∈ ℚ))
7574imp 123 . 2 ((𝐴 ∈ ℚ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℚ)
7611, 75syldan 280 1 ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℚ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wne 2336  wrex 2445   class class class wbr 3982  (class class class)co 5842  cc 7751  0cc0 7753  1c1 7754   · cmul 7758   # cap 8479   / cdiv 8568  cn 8857  cz 9191  cq 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-q 9558
This theorem is referenced by:  qdivcl  9581  qexpclz  10476
  Copyright terms: Public domain W3C validator