![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fprodsplit1f | GIF version |
Description: Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fprodsplit1f.kph | ⊢ Ⅎ𝑘𝜑 |
fprodsplit1f.fk | ⊢ (𝜑 → Ⅎ𝑘𝐷) |
fprodsplit1f.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fprodsplit1f.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
fprodsplit1f.c | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
fprodsplit1f.d | ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
fprodsplit1f | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodsplit1f.kph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | disjdif 3520 | . . . 4 ⊢ ({𝐶} ∩ (𝐴 ∖ {𝐶})) = ∅ | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝜑 → ({𝐶} ∩ (𝐴 ∖ {𝐶})) = ∅) |
4 | fprodsplit1f.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
5 | fprodsplit1f.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
6 | snfig 6870 | . . . . 5 ⊢ (𝐶 ∈ 𝐴 → {𝐶} ∈ Fin) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ (𝜑 → {𝐶} ∈ Fin) |
8 | 5 | snssd 3764 | . . . 4 ⊢ (𝜑 → {𝐶} ⊆ 𝐴) |
9 | undiffi 6983 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ {𝐶} ∈ Fin ∧ {𝐶} ⊆ 𝐴) → 𝐴 = ({𝐶} ∪ (𝐴 ∖ {𝐶}))) | |
10 | 4, 7, 8, 9 | syl3anc 1249 | . . 3 ⊢ (𝜑 → 𝐴 = ({𝐶} ∪ (𝐴 ∖ {𝐶}))) |
11 | fprodsplit1f.b | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
12 | 1, 3, 10, 4, 11 | fprodsplitf 11778 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (∏𝑘 ∈ {𝐶}𝐵 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
13 | 5 | ancli 323 | . . . . . 6 ⊢ (𝜑 → (𝜑 ∧ 𝐶 ∈ 𝐴)) |
14 | nfv 1539 | . . . . . . . . 9 ⊢ Ⅎ𝑘 𝐶 ∈ 𝐴 | |
15 | 1, 14 | nfan 1576 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝜑 ∧ 𝐶 ∈ 𝐴) |
16 | nfcsb1v 3114 | . . . . . . . . 9 ⊢ Ⅎ𝑘⦋𝐶 / 𝑘⦌𝐵 | |
17 | 16 | nfel1 2347 | . . . . . . . 8 ⊢ Ⅎ𝑘⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ |
18 | 15, 17 | nfim 1583 | . . . . . . 7 ⊢ Ⅎ𝑘((𝜑 ∧ 𝐶 ∈ 𝐴) → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ) |
19 | eleq1 2256 | . . . . . . . . 9 ⊢ (𝑘 = 𝐶 → (𝑘 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
20 | 19 | anbi2d 464 | . . . . . . . 8 ⊢ (𝑘 = 𝐶 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝐶 ∈ 𝐴))) |
21 | csbeq1a 3090 | . . . . . . . . 9 ⊢ (𝑘 = 𝐶 → 𝐵 = ⦋𝐶 / 𝑘⦌𝐵) | |
22 | 21 | eleq1d 2262 | . . . . . . . 8 ⊢ (𝑘 = 𝐶 → (𝐵 ∈ ℂ ↔ ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ)) |
23 | 20, 22 | imbi12d 234 | . . . . . . 7 ⊢ (𝑘 = 𝐶 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝐶 ∈ 𝐴) → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ))) |
24 | 18, 23, 11 | vtoclg1f 2820 | . . . . . 6 ⊢ (𝐶 ∈ 𝐴 → ((𝜑 ∧ 𝐶 ∈ 𝐴) → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ)) |
25 | 5, 13, 24 | sylc 62 | . . . . 5 ⊢ (𝜑 → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ) |
26 | prodsns 11749 | . . . . 5 ⊢ ((𝐶 ∈ 𝐴 ∧ ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝐶}𝐵 = ⦋𝐶 / 𝑘⦌𝐵) | |
27 | 5, 25, 26 | syl2anc 411 | . . . 4 ⊢ (𝜑 → ∏𝑘 ∈ {𝐶}𝐵 = ⦋𝐶 / 𝑘⦌𝐵) |
28 | fprodsplit1f.fk | . . . . 5 ⊢ (𝜑 → Ⅎ𝑘𝐷) | |
29 | fprodsplit1f.d | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 𝐷) | |
30 | 1, 28, 5, 29 | csbiedf 3122 | . . . 4 ⊢ (𝜑 → ⦋𝐶 / 𝑘⦌𝐵 = 𝐷) |
31 | 27, 30 | eqtrd 2226 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐶}𝐵 = 𝐷) |
32 | 31 | oveq1d 5934 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ {𝐶}𝐵 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵) = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
33 | 12, 32 | eqtrd 2226 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 Ⅎwnf 1471 ∈ wcel 2164 Ⅎwnfc 2323 ⦋csb 3081 ∖ cdif 3151 ∪ cun 3152 ∩ cin 3153 ⊆ wss 3154 ∅c0 3447 {csn 3619 (class class class)co 5919 Fincfn 6796 ℂcc 7872 · cmul 7879 ∏cprod 11696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-oadd 6475 df-er 6589 df-en 6797 df-dom 6798 df-fin 6799 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-exp 10613 df-ihash 10850 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-clim 11425 df-proddc 11697 |
This theorem is referenced by: fprodeq0g 11784 |
Copyright terms: Public domain | W3C validator |