Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2uz2 GIF version

Theorem peano2uz2 9170
 Description: Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.)
Assertion
Ref Expression
peano2uz2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem peano2uz2
StepHypRef Expression
1 peano2z 9102 . . . 4 (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ)
21ad2antrl 481 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴𝐵)) → (𝐵 + 1) ∈ ℤ)
3 zre 9070 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4 zre 9070 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
5 lep1 8615 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ≤ (𝐵 + 1))
65adantl 275 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ (𝐵 + 1))
7 peano2re 7910 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
87ancli 321 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ))
9 letr 7859 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((𝐴𝐵𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1)))
1093expb 1182 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ)) → ((𝐴𝐵𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1)))
118, 10sylan2 284 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1)))
126, 11mpan2d 424 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐴 ≤ (𝐵 + 1)))
133, 4, 12syl2an 287 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵𝐴 ≤ (𝐵 + 1)))
1413impr 376 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴𝐵)) → 𝐴 ≤ (𝐵 + 1))
152, 14jca 304 . 2 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴𝐵)) → ((𝐵 + 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 + 1)))
16 breq2 3933 . . . 4 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
1716elrab 2840 . . 3 (𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥} ↔ (𝐵 ∈ ℤ ∧ 𝐴𝐵))
1817anbi2i 452 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥}) ↔ (𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴𝐵)))
19 breq2 3933 . . 3 (𝑥 = (𝐵 + 1) → (𝐴𝑥𝐴 ≤ (𝐵 + 1)))
2019elrab 2840 . 2 ((𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥} ↔ ((𝐵 + 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 + 1)))
2115, 18, 203imtr4i 200 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥})
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∈ wcel 1480  {crab 2420   class class class wbr 3929  (class class class)co 5774  ℝcr 7631  1c1 7633   + caddc 7635   ≤ cle 7813  ℤcz 9066 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-ltadd 7748 This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-inn 8733  df-n0 8990  df-z 9067 This theorem is referenced by:  dfuzi  9173
 Copyright terms: Public domain W3C validator