![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano2uz2 | GIF version |
Description: Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.) |
Ref | Expression |
---|---|
peano2uz2 | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2z 9353 | . . . 4 ⊢ (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ) | |
2 | 1 | ad2antrl 490 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) → (𝐵 + 1) ∈ ℤ) |
3 | zre 9321 | . . . . 5 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
4 | zre 9321 | . . . . 5 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
5 | lep1 8864 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → 𝐵 ≤ (𝐵 + 1)) | |
6 | 5 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ (𝐵 + 1)) |
7 | peano2re 8155 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ) | |
8 | 7 | ancli 323 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ)) |
9 | letr 8102 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1))) | |
10 | 9 | 3expb 1206 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ)) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1))) |
11 | 8, 10 | sylan2 286 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1))) |
12 | 6, 11 | mpan2d 428 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → 𝐴 ≤ (𝐵 + 1))) |
13 | 3, 4, 12 | syl2an 289 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 → 𝐴 ≤ (𝐵 + 1))) |
14 | 13 | impr 379 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) → 𝐴 ≤ (𝐵 + 1)) |
15 | 2, 14 | jca 306 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) → ((𝐵 + 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 + 1))) |
16 | breq2 4033 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐵)) | |
17 | 16 | elrab 2916 | . . 3 ⊢ (𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥} ↔ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) |
18 | 17 | anbi2i 457 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) ↔ (𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵))) |
19 | breq2 4033 | . . 3 ⊢ (𝑥 = (𝐵 + 1) → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ (𝐵 + 1))) | |
20 | 19 | elrab 2916 | . 2 ⊢ ((𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥} ↔ ((𝐵 + 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 + 1))) |
21 | 15, 18, 20 | 3imtr4i 201 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 {crab 2476 class class class wbr 4029 (class class class)co 5918 ℝcr 7871 1c1 7873 + caddc 7875 ≤ cle 8055 ℤcz 9317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 |
This theorem is referenced by: dfuzi 9427 |
Copyright terms: Public domain | W3C validator |