![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano2uz2 | GIF version |
Description: Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.) |
Ref | Expression |
---|---|
peano2uz2 | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2z 8786 | . . . 4 ⊢ (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ) | |
2 | 1 | ad2antrl 474 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) → (𝐵 + 1) ∈ ℤ) |
3 | zre 8754 | . . . . 5 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
4 | zre 8754 | . . . . 5 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
5 | lep1 8306 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → 𝐵 ≤ (𝐵 + 1)) | |
6 | 5 | adantl 271 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ (𝐵 + 1)) |
7 | peano2re 7618 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ) | |
8 | 7 | ancli 316 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ)) |
9 | letr 7568 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1))) | |
10 | 9 | 3expb 1144 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ)) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1))) |
11 | 8, 10 | sylan2 280 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1))) |
12 | 6, 11 | mpan2d 419 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → 𝐴 ≤ (𝐵 + 1))) |
13 | 3, 4, 12 | syl2an 283 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 → 𝐴 ≤ (𝐵 + 1))) |
14 | 13 | impr 371 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) → 𝐴 ≤ (𝐵 + 1)) |
15 | 2, 14 | jca 300 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) → ((𝐵 + 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 + 1))) |
16 | breq2 3849 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐵)) | |
17 | 16 | elrab 2771 | . . 3 ⊢ (𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥} ↔ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) |
18 | 17 | anbi2i 445 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) ↔ (𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵))) |
19 | breq2 3849 | . . 3 ⊢ (𝑥 = (𝐵 + 1) → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ (𝐵 + 1))) | |
20 | 19 | elrab 2771 | . 2 ⊢ ((𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥} ↔ ((𝐵 + 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 + 1))) |
21 | 15, 18, 20 | 3imtr4i 199 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1438 {crab 2363 class class class wbr 3845 (class class class)co 5652 ℝcr 7349 1c1 7351 + caddc 7353 ≤ cle 7523 ℤcz 8750 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-cnex 7436 ax-resscn 7437 ax-1cn 7438 ax-1re 7439 ax-icn 7440 ax-addcl 7441 ax-addrcl 7442 ax-mulcl 7443 ax-addcom 7445 ax-addass 7447 ax-distr 7449 ax-i2m1 7450 ax-0lt1 7451 ax-0id 7453 ax-rnegex 7454 ax-cnre 7456 ax-pre-ltirr 7457 ax-pre-ltwlin 7458 ax-pre-lttrn 7459 ax-pre-ltadd 7461 |
This theorem depends on definitions: df-bi 115 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-br 3846 df-opab 3900 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-iota 4980 df-fun 5017 df-fv 5023 df-riota 5608 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-pnf 7524 df-mnf 7525 df-xr 7526 df-ltxr 7527 df-le 7528 df-sub 7655 df-neg 7656 df-inn 8423 df-n0 8674 df-z 8751 |
This theorem is referenced by: dfuzi 8856 |
Copyright terms: Public domain | W3C validator |