| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2uz2 | GIF version | ||
| Description: Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.) |
| Ref | Expression |
|---|---|
| peano2uz2 | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2z 9478 | . . . 4 ⊢ (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ) | |
| 2 | 1 | ad2antrl 490 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) → (𝐵 + 1) ∈ ℤ) |
| 3 | zre 9446 | . . . . 5 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 4 | zre 9446 | . . . . 5 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
| 5 | lep1 8988 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → 𝐵 ≤ (𝐵 + 1)) | |
| 6 | 5 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ (𝐵 + 1)) |
| 7 | peano2re 8278 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ) | |
| 8 | 7 | ancli 323 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ)) |
| 9 | letr 8225 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1))) | |
| 10 | 9 | 3expb 1228 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ)) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1))) |
| 11 | 8, 10 | sylan2 286 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1))) |
| 12 | 6, 11 | mpan2d 428 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → 𝐴 ≤ (𝐵 + 1))) |
| 13 | 3, 4, 12 | syl2an 289 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 → 𝐴 ≤ (𝐵 + 1))) |
| 14 | 13 | impr 379 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) → 𝐴 ≤ (𝐵 + 1)) |
| 15 | 2, 14 | jca 306 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) → ((𝐵 + 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 + 1))) |
| 16 | breq2 4086 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐵)) | |
| 17 | 16 | elrab 2959 | . . 3 ⊢ (𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥} ↔ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) |
| 18 | 17 | anbi2i 457 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) ↔ (𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵))) |
| 19 | breq2 4086 | . . 3 ⊢ (𝑥 = (𝐵 + 1) → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ (𝐵 + 1))) | |
| 20 | 19 | elrab 2959 | . 2 ⊢ ((𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥} ↔ ((𝐵 + 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 + 1))) |
| 21 | 15, 18, 20 | 3imtr4i 201 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 {crab 2512 class class class wbr 4082 (class class class)co 6000 ℝcr 7994 1c1 7996 + caddc 7998 ≤ cle 8178 ℤcz 9442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 |
| This theorem is referenced by: dfuzi 9553 |
| Copyright terms: Public domain | W3C validator |