| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2uz2 | GIF version | ||
| Description: Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.) |
| Ref | Expression |
|---|---|
| peano2uz2 | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2z 9390 | . . . 4 ⊢ (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ) | |
| 2 | 1 | ad2antrl 490 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) → (𝐵 + 1) ∈ ℤ) |
| 3 | zre 9358 | . . . . 5 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 4 | zre 9358 | . . . . 5 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
| 5 | lep1 8900 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → 𝐵 ≤ (𝐵 + 1)) | |
| 6 | 5 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ (𝐵 + 1)) |
| 7 | peano2re 8190 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ) | |
| 8 | 7 | ancli 323 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ)) |
| 9 | letr 8137 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1))) | |
| 10 | 9 | 3expb 1206 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ)) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1))) |
| 11 | 8, 10 | sylan2 286 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1))) |
| 12 | 6, 11 | mpan2d 428 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → 𝐴 ≤ (𝐵 + 1))) |
| 13 | 3, 4, 12 | syl2an 289 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 → 𝐴 ≤ (𝐵 + 1))) |
| 14 | 13 | impr 379 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) → 𝐴 ≤ (𝐵 + 1)) |
| 15 | 2, 14 | jca 306 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) → ((𝐵 + 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 + 1))) |
| 16 | breq2 4047 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐵)) | |
| 17 | 16 | elrab 2928 | . . 3 ⊢ (𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥} ↔ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) |
| 18 | 17 | anbi2i 457 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) ↔ (𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵))) |
| 19 | breq2 4047 | . . 3 ⊢ (𝑥 = (𝐵 + 1) → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ (𝐵 + 1))) | |
| 20 | 19 | elrab 2928 | . 2 ⊢ ((𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥} ↔ ((𝐵 + 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 + 1))) |
| 21 | 15, 18, 20 | 3imtr4i 201 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2175 {crab 2487 class class class wbr 4043 (class class class)co 5934 ℝcr 7906 1c1 7908 + caddc 7910 ≤ cle 8090 ℤcz 9354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-iota 5229 df-fun 5270 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-inn 9019 df-n0 9278 df-z 9355 |
| This theorem is referenced by: dfuzi 9465 |
| Copyright terms: Public domain | W3C validator |