ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2uz2 GIF version

Theorem peano2uz2 8853
Description: Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.)
Assertion
Ref Expression
peano2uz2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem peano2uz2
StepHypRef Expression
1 peano2z 8786 . . . 4 (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ)
21ad2antrl 474 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴𝐵)) → (𝐵 + 1) ∈ ℤ)
3 zre 8754 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4 zre 8754 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
5 lep1 8306 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ≤ (𝐵 + 1))
65adantl 271 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ (𝐵 + 1))
7 peano2re 7618 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
87ancli 316 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ))
9 letr 7568 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((𝐴𝐵𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1)))
1093expb 1144 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ)) → ((𝐴𝐵𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1)))
118, 10sylan2 280 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1)))
126, 11mpan2d 419 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐴 ≤ (𝐵 + 1)))
133, 4, 12syl2an 283 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵𝐴 ≤ (𝐵 + 1)))
1413impr 371 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴𝐵)) → 𝐴 ≤ (𝐵 + 1))
152, 14jca 300 . 2 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴𝐵)) → ((𝐵 + 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 + 1)))
16 breq2 3849 . . . 4 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
1716elrab 2771 . . 3 (𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥} ↔ (𝐵 ∈ ℤ ∧ 𝐴𝐵))
1817anbi2i 445 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥}) ↔ (𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴𝐵)))
19 breq2 3849 . . 3 (𝑥 = (𝐵 + 1) → (𝐴𝑥𝐴 ≤ (𝐵 + 1)))
2019elrab 2771 . 2 ((𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥} ↔ ((𝐵 + 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 + 1)))
2115, 18, 203imtr4i 199 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wcel 1438  {crab 2363   class class class wbr 3845  (class class class)co 5652  cr 7349  1c1 7351   + caddc 7353  cle 7523  cz 8750
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-addcom 7445  ax-addass 7447  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-0id 7453  ax-rnegex 7454  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-ltadd 7461
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-inn 8423  df-n0 8674  df-z 8751
This theorem is referenced by:  dfuzi  8856
  Copyright terms: Public domain W3C validator