Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2uz2 | GIF version |
Description: Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.) |
Ref | Expression |
---|---|
peano2uz2 | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2z 9227 | . . . 4 ⊢ (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ) | |
2 | 1 | ad2antrl 482 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) → (𝐵 + 1) ∈ ℤ) |
3 | zre 9195 | . . . . 5 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
4 | zre 9195 | . . . . 5 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
5 | lep1 8740 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → 𝐵 ≤ (𝐵 + 1)) | |
6 | 5 | adantl 275 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ (𝐵 + 1)) |
7 | peano2re 8034 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ) | |
8 | 7 | ancli 321 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ)) |
9 | letr 7981 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1))) | |
10 | 9 | 3expb 1194 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ)) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1))) |
11 | 8, 10 | sylan2 284 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1))) |
12 | 6, 11 | mpan2d 425 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → 𝐴 ≤ (𝐵 + 1))) |
13 | 3, 4, 12 | syl2an 287 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 → 𝐴 ≤ (𝐵 + 1))) |
14 | 13 | impr 377 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) → 𝐴 ≤ (𝐵 + 1)) |
15 | 2, 14 | jca 304 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) → ((𝐵 + 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 + 1))) |
16 | breq2 3986 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐵)) | |
17 | 16 | elrab 2882 | . . 3 ⊢ (𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥} ↔ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) |
18 | 17 | anbi2i 453 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) ↔ (𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵))) |
19 | breq2 3986 | . . 3 ⊢ (𝑥 = (𝐵 + 1) → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ (𝐵 + 1))) | |
20 | 19 | elrab 2882 | . 2 ⊢ ((𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥} ↔ ((𝐵 + 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 + 1))) |
21 | 15, 18, 20 | 3imtr4i 200 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 {crab 2448 class class class wbr 3982 (class class class)co 5842 ℝcr 7752 1c1 7754 + caddc 7756 ≤ cle 7934 ℤcz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 |
This theorem is referenced by: dfuzi 9301 |
Copyright terms: Public domain | W3C validator |