ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  p1le GIF version

Theorem p1le 8808
Description: A transitive property of plus 1 and 'less than or equal'. (Contributed by NM, 16-Aug-2005.)
Assertion
Ref Expression
p1le ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + 1) ≤ 𝐵) → 𝐴𝐵)

Proof of Theorem p1le
StepHypRef Expression
1 lep1 8804 . . . 4 (𝐴 ∈ ℝ → 𝐴 ≤ (𝐴 + 1))
21adantr 276 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ (𝐴 + 1))
3 peano2re 8095 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
43ancli 323 . . . 4 (𝐴 ∈ ℝ → (𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ))
5 letr 8042 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ (𝐴 + 1) ∧ (𝐴 + 1) ≤ 𝐵) → 𝐴𝐵))
653expa 1203 . . . 4 (((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ (𝐴 + 1) ∧ (𝐴 + 1) ≤ 𝐵) → 𝐴𝐵))
74, 6sylan 283 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ (𝐴 + 1) ∧ (𝐴 + 1) ≤ 𝐵) → 𝐴𝐵))
82, 7mpand 429 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 1) ≤ 𝐵𝐴𝐵))
983impia 1200 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + 1) ≤ 𝐵) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978  wcel 2148   class class class wbr 4005  (class class class)co 5877  cr 7812  1c1 7814   + caddc 7816  cle 7995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-iota 5180  df-fv 5226  df-ov 5880  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000
This theorem is referenced by:  fzind  9370
  Copyright terms: Public domain W3C validator