ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  innei GIF version

Theorem innei 14331
Description: The intersection of two neighborhoods of a set is also a neighborhood of the set. Generalization to subsets of Property Vii of [BourbakiTop1] p. I.3 for binary intersections. (Contributed by FL, 28-Sep-2006.)
Assertion
Ref Expression
innei ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁𝑀) ∈ ((nei‘𝐽)‘𝑆))

Proof of Theorem innei
Dummy variables 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . . 5 𝐽 = 𝐽
21neii1 14315 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 𝐽)
3 ssinss1 3388 . . . 4 (𝑁 𝐽 → (𝑁𝑀) ⊆ 𝐽)
42, 3syl 14 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁𝑀) ⊆ 𝐽)
543adant3 1019 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁𝑀) ⊆ 𝐽)
6 neii2 14317 . . . . 5 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝐽 (𝑆𝑁))
7 neii2 14317 . . . . 5 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑣𝐽 (𝑆𝑣𝑣𝑀))
86, 7anim12dan 600 . . . 4 ((𝐽 ∈ Top ∧ (𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆))) → (∃𝐽 (𝑆𝑁) ∧ ∃𝑣𝐽 (𝑆𝑣𝑣𝑀)))
9 inopn 14171 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝐽𝑣𝐽) → (𝑣) ∈ 𝐽)
1093expa 1205 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐽) ∧ 𝑣𝐽) → (𝑣) ∈ 𝐽)
11 ssin 3381 . . . . . . . . . . . . 13 ((𝑆𝑆𝑣) ↔ 𝑆 ⊆ (𝑣))
1211biimpi 120 . . . . . . . . . . . 12 ((𝑆𝑆𝑣) → 𝑆 ⊆ (𝑣))
13 ss2in 3387 . . . . . . . . . . . 12 ((𝑁𝑣𝑀) → (𝑣) ⊆ (𝑁𝑀))
1412, 13anim12i 338 . . . . . . . . . . 11 (((𝑆𝑆𝑣) ∧ (𝑁𝑣𝑀)) → (𝑆 ⊆ (𝑣) ∧ (𝑣) ⊆ (𝑁𝑀)))
1514an4s 588 . . . . . . . . . 10 (((𝑆𝑁) ∧ (𝑆𝑣𝑣𝑀)) → (𝑆 ⊆ (𝑣) ∧ (𝑣) ⊆ (𝑁𝑀)))
16 sseq2 3203 . . . . . . . . . . . 12 (𝑔 = (𝑣) → (𝑆𝑔𝑆 ⊆ (𝑣)))
17 sseq1 3202 . . . . . . . . . . . 12 (𝑔 = (𝑣) → (𝑔 ⊆ (𝑁𝑀) ↔ (𝑣) ⊆ (𝑁𝑀)))
1816, 17anbi12d 473 . . . . . . . . . . 11 (𝑔 = (𝑣) → ((𝑆𝑔𝑔 ⊆ (𝑁𝑀)) ↔ (𝑆 ⊆ (𝑣) ∧ (𝑣) ⊆ (𝑁𝑀))))
1918rspcev 2864 . . . . . . . . . 10 (((𝑣) ∈ 𝐽 ∧ (𝑆 ⊆ (𝑣) ∧ (𝑣) ⊆ (𝑁𝑀))) → ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀)))
2010, 15, 19syl2an 289 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐽) ∧ 𝑣𝐽) ∧ ((𝑆𝑁) ∧ (𝑆𝑣𝑣𝑀))) → ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀)))
2120expr 375 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐽) ∧ 𝑣𝐽) ∧ (𝑆𝑁)) → ((𝑆𝑣𝑣𝑀) → ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀))))
2221an32s 568 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐽) ∧ (𝑆𝑁)) ∧ 𝑣𝐽) → ((𝑆𝑣𝑣𝑀) → ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀))))
2322rexlimdva 2611 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐽) ∧ (𝑆𝑁)) → (∃𝑣𝐽 (𝑆𝑣𝑣𝑀) → ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀))))
2423rexlimdva2 2614 . . . . 5 (𝐽 ∈ Top → (∃𝐽 (𝑆𝑁) → (∃𝑣𝐽 (𝑆𝑣𝑣𝑀) → ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀)))))
2524imp32 257 . . . 4 ((𝐽 ∈ Top ∧ (∃𝐽 (𝑆𝑁) ∧ ∃𝑣𝐽 (𝑆𝑣𝑣𝑀))) → ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀)))
268, 25syldan 282 . . 3 ((𝐽 ∈ Top ∧ (𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆))) → ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀)))
27263impb 1201 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀)))
281neiss2 14310 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 𝐽)
291isnei 14312 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((𝑁𝑀) ∈ ((nei‘𝐽)‘𝑆) ↔ ((𝑁𝑀) ⊆ 𝐽 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀)))))
3028, 29syldan 282 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ((𝑁𝑀) ∈ ((nei‘𝐽)‘𝑆) ↔ ((𝑁𝑀) ⊆ 𝐽 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀)))))
31303adant3 1019 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → ((𝑁𝑀) ∈ ((nei‘𝐽)‘𝑆) ↔ ((𝑁𝑀) ⊆ 𝐽 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔 ⊆ (𝑁𝑀)))))
325, 27, 31mpbir2and 946 1 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁𝑀) ∈ ((nei‘𝐽)‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wrex 2473  cin 3152  wss 3153   cuni 3835  cfv 5254  Topctop 14165  neicnei 14306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-top 14166  df-nei 14307
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator