Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpexr2m | GIF version |
Description: If a nonempty cross product is a set, so are both of its components. (Contributed by Jim Kingdon, 14-Dec-2018.) |
Ref | Expression |
---|---|
xpexr2m | ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpm 5025 | . 2 ⊢ ((∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) | |
2 | dmxpm 4824 | . . . . . 6 ⊢ (∃𝑏 𝑏 ∈ 𝐵 → dom (𝐴 × 𝐵) = 𝐴) | |
3 | 2 | adantl 275 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑏 𝑏 ∈ 𝐵) → dom (𝐴 × 𝐵) = 𝐴) |
4 | dmexg 4868 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → dom (𝐴 × 𝐵) ∈ V) | |
5 | 4 | adantr 274 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑏 𝑏 ∈ 𝐵) → dom (𝐴 × 𝐵) ∈ V) |
6 | 3, 5 | eqeltrrd 2244 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑏 𝑏 ∈ 𝐵) → 𝐴 ∈ V) |
7 | rnxpm 5033 | . . . . . 6 ⊢ (∃𝑎 𝑎 ∈ 𝐴 → ran (𝐴 × 𝐵) = 𝐵) | |
8 | 7 | adantl 275 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑎 𝑎 ∈ 𝐴) → ran (𝐴 × 𝐵) = 𝐵) |
9 | rnexg 4869 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V) | |
10 | 9 | adantr 274 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑎 𝑎 ∈ 𝐴) → ran (𝐴 × 𝐵) ∈ V) |
11 | 8, 10 | eqeltrrd 2244 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑎 𝑎 ∈ 𝐴) → 𝐵 ∈ V) |
12 | 6, 11 | anim12dan 590 | . . 3 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (∃𝑏 𝑏 ∈ 𝐵 ∧ ∃𝑎 𝑎 ∈ 𝐴)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
13 | 12 | ancom2s 556 | . 2 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
14 | 1, 13 | sylan2br 286 | 1 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 × cxp 4602 dom cdm 4604 ran crn 4605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-dm 4614 df-rn 4615 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |