ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpexr2m GIF version

Theorem xpexr2m 4906
Description: If a nonempty cross product is a set, so are both of its components. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
xpexr2m (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem xpexr2m
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpm 4886 . 2 ((∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵))
2 dmxpm 4687 . . . . . 6 (∃𝑏 𝑏𝐵 → dom (𝐴 × 𝐵) = 𝐴)
32adantl 272 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑏 𝑏𝐵) → dom (𝐴 × 𝐵) = 𝐴)
4 dmexg 4729 . . . . . 6 ((𝐴 × 𝐵) ∈ 𝐶 → dom (𝐴 × 𝐵) ∈ V)
54adantr 271 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑏 𝑏𝐵) → dom (𝐴 × 𝐵) ∈ V)
63, 5eqeltrrd 2172 . . . 4 (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑏 𝑏𝐵) → 𝐴 ∈ V)
7 rnxpm 4894 . . . . . 6 (∃𝑎 𝑎𝐴 → ran (𝐴 × 𝐵) = 𝐵)
87adantl 272 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑎 𝑎𝐴) → ran (𝐴 × 𝐵) = 𝐵)
9 rnexg 4730 . . . . . 6 ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V)
109adantr 271 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑎 𝑎𝐴) → ran (𝐴 × 𝐵) ∈ V)
118, 10eqeltrrd 2172 . . . 4 (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑎 𝑎𝐴) → 𝐵 ∈ V)
126, 11anim12dan 568 . . 3 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (∃𝑏 𝑏𝐵 ∧ ∃𝑎 𝑎𝐴)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1312ancom2s 534 . 2 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
141, 13sylan2br 283 1 (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1296  wex 1433  wcel 1445  Vcvv 2633   × cxp 4465  dom cdm 4467  ran crn 4468
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-xp 4473  df-rel 4474  df-cnv 4475  df-dm 4477  df-rn 4478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator