ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpexr2m GIF version

Theorem xpexr2m 4988
Description: If a nonempty cross product is a set, so are both of its components. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
xpexr2m (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem xpexr2m
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpm 4968 . 2 ((∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵))
2 dmxpm 4767 . . . . . 6 (∃𝑏 𝑏𝐵 → dom (𝐴 × 𝐵) = 𝐴)
32adantl 275 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑏 𝑏𝐵) → dom (𝐴 × 𝐵) = 𝐴)
4 dmexg 4811 . . . . . 6 ((𝐴 × 𝐵) ∈ 𝐶 → dom (𝐴 × 𝐵) ∈ V)
54adantr 274 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑏 𝑏𝐵) → dom (𝐴 × 𝐵) ∈ V)
63, 5eqeltrrd 2218 . . . 4 (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑏 𝑏𝐵) → 𝐴 ∈ V)
7 rnxpm 4976 . . . . . 6 (∃𝑎 𝑎𝐴 → ran (𝐴 × 𝐵) = 𝐵)
87adantl 275 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑎 𝑎𝐴) → ran (𝐴 × 𝐵) = 𝐵)
9 rnexg 4812 . . . . . 6 ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V)
109adantr 274 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑎 𝑎𝐴) → ran (𝐴 × 𝐵) ∈ V)
118, 10eqeltrrd 2218 . . . 4 (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑎 𝑎𝐴) → 𝐵 ∈ V)
126, 11anim12dan 590 . . 3 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (∃𝑏 𝑏𝐵 ∧ ∃𝑎 𝑎𝐴)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1312ancom2s 556 . 2 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
141, 13sylan2br 286 1 (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wex 1469  wcel 1481  Vcvv 2689   × cxp 4545  dom cdm 4547  ran crn 4548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-xp 4553  df-rel 4554  df-cnv 4555  df-dm 4557  df-rn 4558
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator