![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpexr2m | GIF version |
Description: If a nonempty cross product is a set, so are both of its components. (Contributed by Jim Kingdon, 14-Dec-2018.) |
Ref | Expression |
---|---|
xpexr2m | ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpm 4886 | . 2 ⊢ ((∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) | |
2 | dmxpm 4687 | . . . . . 6 ⊢ (∃𝑏 𝑏 ∈ 𝐵 → dom (𝐴 × 𝐵) = 𝐴) | |
3 | 2 | adantl 272 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑏 𝑏 ∈ 𝐵) → dom (𝐴 × 𝐵) = 𝐴) |
4 | dmexg 4729 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → dom (𝐴 × 𝐵) ∈ V) | |
5 | 4 | adantr 271 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑏 𝑏 ∈ 𝐵) → dom (𝐴 × 𝐵) ∈ V) |
6 | 3, 5 | eqeltrrd 2172 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑏 𝑏 ∈ 𝐵) → 𝐴 ∈ V) |
7 | rnxpm 4894 | . . . . . 6 ⊢ (∃𝑎 𝑎 ∈ 𝐴 → ran (𝐴 × 𝐵) = 𝐵) | |
8 | 7 | adantl 272 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑎 𝑎 ∈ 𝐴) → ran (𝐴 × 𝐵) = 𝐵) |
9 | rnexg 4730 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V) | |
10 | 9 | adantr 271 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑎 𝑎 ∈ 𝐴) → ran (𝐴 × 𝐵) ∈ V) |
11 | 8, 10 | eqeltrrd 2172 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑎 𝑎 ∈ 𝐴) → 𝐵 ∈ V) |
12 | 6, 11 | anim12dan 568 | . . 3 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (∃𝑏 𝑏 ∈ 𝐵 ∧ ∃𝑎 𝑎 ∈ 𝐴)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
13 | 12 | ancom2s 534 | . 2 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
14 | 1, 13 | sylan2br 283 | 1 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∃wex 1433 ∈ wcel 1445 Vcvv 2633 × cxp 4465 dom cdm 4467 ran crn 4468 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-xp 4473 df-rel 4474 df-cnv 4475 df-dm 4477 df-rn 4478 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |