| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpexr2m | GIF version | ||
| Description: If a nonempty cross product is a set, so are both of its components. (Contributed by Jim Kingdon, 14-Dec-2018.) |
| Ref | Expression |
|---|---|
| xpexr2m | ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpm 5146 | . 2 ⊢ ((∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) | |
| 2 | dmxpm 4940 | . . . . . 6 ⊢ (∃𝑏 𝑏 ∈ 𝐵 → dom (𝐴 × 𝐵) = 𝐴) | |
| 3 | 2 | adantl 277 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑏 𝑏 ∈ 𝐵) → dom (𝐴 × 𝐵) = 𝐴) |
| 4 | dmexg 4984 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → dom (𝐴 × 𝐵) ∈ V) | |
| 5 | 4 | adantr 276 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑏 𝑏 ∈ 𝐵) → dom (𝐴 × 𝐵) ∈ V) |
| 6 | 3, 5 | eqeltrrd 2307 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑏 𝑏 ∈ 𝐵) → 𝐴 ∈ V) |
| 7 | rnxpm 5154 | . . . . . 6 ⊢ (∃𝑎 𝑎 ∈ 𝐴 → ran (𝐴 × 𝐵) = 𝐵) | |
| 8 | 7 | adantl 277 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑎 𝑎 ∈ 𝐴) → ran (𝐴 × 𝐵) = 𝐵) |
| 9 | rnexg 4985 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V) | |
| 10 | 9 | adantr 276 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑎 𝑎 ∈ 𝐴) → ran (𝐴 × 𝐵) ∈ V) |
| 11 | 8, 10 | eqeltrrd 2307 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑎 𝑎 ∈ 𝐴) → 𝐵 ∈ V) |
| 12 | 6, 11 | anim12dan 602 | . . 3 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (∃𝑏 𝑏 ∈ 𝐵 ∧ ∃𝑎 𝑎 ∈ 𝐴)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 13 | 12 | ancom2s 566 | . 2 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 14 | 1, 13 | sylan2br 288 | 1 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 × cxp 4714 dom cdm 4716 ran crn 4717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4722 df-rel 4723 df-cnv 4724 df-dm 4726 df-rn 4727 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |