ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasaddflemg GIF version

Theorem imasaddflemg 13119
Description: The image set operations are closed if the original operation is. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasaddf.f (𝜑𝐹:𝑉onto𝐵)
imasaddf.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
imasaddflem.a (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
imasaddfnlemg.v (𝜑𝑉𝑊)
imasaddfnlemg.x (𝜑·𝐶)
imasaddflem.c ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
Assertion
Ref Expression
imasaddflemg (𝜑 :(𝐵 × 𝐵)⟶𝐵)
Distinct variable groups:   𝑞,𝑝,𝐵   𝑎,𝑏,𝑝,𝑞,𝑉   · ,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   𝐶(𝑞,𝑝,𝑎,𝑏)   · (𝑎,𝑏)   𝑊(𝑞,𝑝,𝑎,𝑏)

Proof of Theorem imasaddflemg
StepHypRef Expression
1 imasaddf.f . . 3 (𝜑𝐹:𝑉onto𝐵)
2 imasaddf.e . . 3 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
3 imasaddflem.a . . 3 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
4 imasaddfnlemg.v . . 3 (𝜑𝑉𝑊)
5 imasaddfnlemg.x . . 3 (𝜑·𝐶)
61, 2, 3, 4, 5imasaddfnlemg 13117 . 2 (𝜑 Fn (𝐵 × 𝐵))
7 fof 5497 . . . . . . . . . 10 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
81, 7syl 14 . . . . . . . . 9 (𝜑𝐹:𝑉𝐵)
9 ffvelcdm 5712 . . . . . . . . . . 11 ((𝐹:𝑉𝐵𝑝𝑉) → (𝐹𝑝) ∈ 𝐵)
10 ffvelcdm 5712 . . . . . . . . . . 11 ((𝐹:𝑉𝐵𝑞𝑉) → (𝐹𝑞) ∈ 𝐵)
119, 10anim12dan 600 . . . . . . . . . 10 ((𝐹:𝑉𝐵 ∧ (𝑝𝑉𝑞𝑉)) → ((𝐹𝑝) ∈ 𝐵 ∧ (𝐹𝑞) ∈ 𝐵))
12 opelxpi 4706 . . . . . . . . . 10 (((𝐹𝑝) ∈ 𝐵 ∧ (𝐹𝑞) ∈ 𝐵) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ (𝐵 × 𝐵))
1311, 12syl 14 . . . . . . . . 9 ((𝐹:𝑉𝐵 ∧ (𝑝𝑉𝑞𝑉)) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ (𝐵 × 𝐵))
148, 13sylan 283 . . . . . . . 8 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ (𝐵 × 𝐵))
15 imasaddflem.c . . . . . . . . 9 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
16 ffvelcdm 5712 . . . . . . . . 9 ((𝐹:𝑉𝐵 ∧ (𝑝 · 𝑞) ∈ 𝑉) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
178, 15, 16syl2an2r 595 . . . . . . . 8 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1814, 17opelxpd 4707 . . . . . . 7 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ ((𝐵 × 𝐵) × 𝐵))
1918snssd 3777 . . . . . 6 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × 𝐵))
2019anassrs 400 . . . . 5 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × 𝐵))
2120iunssd 3972 . . . 4 ((𝜑𝑝𝑉) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × 𝐵))
2221iunssd 3972 . . 3 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × 𝐵))
233, 22eqsstrd 3228 . 2 (𝜑 ⊆ ((𝐵 × 𝐵) × 𝐵))
24 dff2 5723 . 2 ( :(𝐵 × 𝐵)⟶𝐵 ↔ ( Fn (𝐵 × 𝐵) ∧ ⊆ ((𝐵 × 𝐵) × 𝐵)))
256, 23, 24sylanbrc 417 1 (𝜑 :(𝐵 × 𝐵)⟶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1372  wcel 2175  wss 3165  {csn 3632  cop 3635   ciun 3926   × cxp 4672   Fn wfn 5265  wf 5266  ontowfo 5268  cfv 5270  (class class class)co 5943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946
This theorem is referenced by:  imasaddf  13122  imasmulf  13125  qusaddflemg  13137
  Copyright terms: Public domain W3C validator