| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > imasaddflemg | GIF version | ||
| Description: The image set operations are closed if the original operation is. (Contributed by Mario Carneiro, 23-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| imasaddf.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | 
| imasaddf.e | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) | 
| imasaddflem.a | ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) | 
| imasaddfnlemg.v | ⊢ (𝜑 → 𝑉 ∈ 𝑊) | 
| imasaddfnlemg.x | ⊢ (𝜑 → · ∈ 𝐶) | 
| imasaddflem.c | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | 
| Ref | Expression | 
|---|---|
| imasaddflemg | ⊢ (𝜑 → ∙ :(𝐵 × 𝐵)⟶𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imasaddf.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
| 2 | imasaddf.e | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) | |
| 3 | imasaddflem.a | . . 3 ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) | |
| 4 | imasaddfnlemg.v | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝑊) | |
| 5 | imasaddfnlemg.x | . . 3 ⊢ (𝜑 → · ∈ 𝐶) | |
| 6 | 1, 2, 3, 4, 5 | imasaddfnlemg 12957 | . 2 ⊢ (𝜑 → ∙ Fn (𝐵 × 𝐵)) | 
| 7 | fof 5480 | . . . . . . . . . 10 ⊢ (𝐹:𝑉–onto→𝐵 → 𝐹:𝑉⟶𝐵) | |
| 8 | 1, 7 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:𝑉⟶𝐵) | 
| 9 | ffvelcdm 5695 | . . . . . . . . . . 11 ⊢ ((𝐹:𝑉⟶𝐵 ∧ 𝑝 ∈ 𝑉) → (𝐹‘𝑝) ∈ 𝐵) | |
| 10 | ffvelcdm 5695 | . . . . . . . . . . 11 ⊢ ((𝐹:𝑉⟶𝐵 ∧ 𝑞 ∈ 𝑉) → (𝐹‘𝑞) ∈ 𝐵) | |
| 11 | 9, 10 | anim12dan 600 | . . . . . . . . . 10 ⊢ ((𝐹:𝑉⟶𝐵 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑝) ∈ 𝐵 ∧ (𝐹‘𝑞) ∈ 𝐵)) | 
| 12 | opelxpi 4695 | . . . . . . . . . 10 ⊢ (((𝐹‘𝑝) ∈ 𝐵 ∧ (𝐹‘𝑞) ∈ 𝐵) → 〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ (𝐵 × 𝐵)) | |
| 13 | 11, 12 | syl 14 | . . . . . . . . 9 ⊢ ((𝐹:𝑉⟶𝐵 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → 〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ (𝐵 × 𝐵)) | 
| 14 | 8, 13 | sylan 283 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → 〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ (𝐵 × 𝐵)) | 
| 15 | imasaddflem.c | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | |
| 16 | ffvelcdm 5695 | . . . . . . . . 9 ⊢ ((𝐹:𝑉⟶𝐵 ∧ (𝑝 · 𝑞) ∈ 𝑉) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) | |
| 17 | 8, 15, 16 | syl2an2r 595 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) | 
| 18 | 14, 17 | opelxpd 4696 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉 ∈ ((𝐵 × 𝐵) × 𝐵)) | 
| 19 | 18 | snssd 3767 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ⊆ ((𝐵 × 𝐵) × 𝐵)) | 
| 20 | 19 | anassrs 400 | . . . . 5 ⊢ (((𝜑 ∧ 𝑝 ∈ 𝑉) ∧ 𝑞 ∈ 𝑉) → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ⊆ ((𝐵 × 𝐵) × 𝐵)) | 
| 21 | 20 | iunssd 3962 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑉) → ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ⊆ ((𝐵 × 𝐵) × 𝐵)) | 
| 22 | 21 | iunssd 3962 | . . 3 ⊢ (𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ⊆ ((𝐵 × 𝐵) × 𝐵)) | 
| 23 | 3, 22 | eqsstrd 3219 | . 2 ⊢ (𝜑 → ∙ ⊆ ((𝐵 × 𝐵) × 𝐵)) | 
| 24 | dff2 5706 | . 2 ⊢ ( ∙ :(𝐵 × 𝐵)⟶𝐵 ↔ ( ∙ Fn (𝐵 × 𝐵) ∧ ∙ ⊆ ((𝐵 × 𝐵) × 𝐵))) | |
| 25 | 6, 23, 24 | sylanbrc 417 | 1 ⊢ (𝜑 → ∙ :(𝐵 × 𝐵)⟶𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 {csn 3622 〈cop 3625 ∪ ciun 3916 × cxp 4661 Fn wfn 5253 ⟶wf 5254 –onto→wfo 5256 ‘cfv 5258 (class class class)co 5922 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: imasaddf 12962 imasmulf 12965 qusaddflemg 12977 | 
| Copyright terms: Public domain | W3C validator |