![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imasaddflemg | GIF version |
Description: The image set operations are closed if the original operation is. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
imasaddf.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
imasaddf.e | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) |
imasaddflem.a | ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
imasaddfnlemg.v | ⊢ (𝜑 → 𝑉 ∈ 𝑊) |
imasaddfnlemg.x | ⊢ (𝜑 → · ∈ 𝐶) |
imasaddflem.c | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
Ref | Expression |
---|---|
imasaddflemg | ⊢ (𝜑 → ∙ :(𝐵 × 𝐵)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasaddf.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
2 | imasaddf.e | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) | |
3 | imasaddflem.a | . . 3 ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) | |
4 | imasaddfnlemg.v | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝑊) | |
5 | imasaddfnlemg.x | . . 3 ⊢ (𝜑 → · ∈ 𝐶) | |
6 | 1, 2, 3, 4, 5 | imasaddfnlemg 12753 | . 2 ⊢ (𝜑 → ∙ Fn (𝐵 × 𝐵)) |
7 | fof 5450 | . . . . . . . . . 10 ⊢ (𝐹:𝑉–onto→𝐵 → 𝐹:𝑉⟶𝐵) | |
8 | 1, 7 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:𝑉⟶𝐵) |
9 | ffvelcdm 5662 | . . . . . . . . . . 11 ⊢ ((𝐹:𝑉⟶𝐵 ∧ 𝑝 ∈ 𝑉) → (𝐹‘𝑝) ∈ 𝐵) | |
10 | ffvelcdm 5662 | . . . . . . . . . . 11 ⊢ ((𝐹:𝑉⟶𝐵 ∧ 𝑞 ∈ 𝑉) → (𝐹‘𝑞) ∈ 𝐵) | |
11 | 9, 10 | anim12dan 600 | . . . . . . . . . 10 ⊢ ((𝐹:𝑉⟶𝐵 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑝) ∈ 𝐵 ∧ (𝐹‘𝑞) ∈ 𝐵)) |
12 | opelxpi 4670 | . . . . . . . . . 10 ⊢ (((𝐹‘𝑝) ∈ 𝐵 ∧ (𝐹‘𝑞) ∈ 𝐵) → 〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ (𝐵 × 𝐵)) | |
13 | 11, 12 | syl 14 | . . . . . . . . 9 ⊢ ((𝐹:𝑉⟶𝐵 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → 〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ (𝐵 × 𝐵)) |
14 | 8, 13 | sylan 283 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → 〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ (𝐵 × 𝐵)) |
15 | imasaddflem.c | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | |
16 | ffvelcdm 5662 | . . . . . . . . 9 ⊢ ((𝐹:𝑉⟶𝐵 ∧ (𝑝 · 𝑞) ∈ 𝑉) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) | |
17 | 8, 15, 16 | syl2an2r 595 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
18 | 14, 17 | opelxpd 4671 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉 ∈ ((𝐵 × 𝐵) × 𝐵)) |
19 | 18 | snssd 3749 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ⊆ ((𝐵 × 𝐵) × 𝐵)) |
20 | 19 | anassrs 400 | . . . . 5 ⊢ (((𝜑 ∧ 𝑝 ∈ 𝑉) ∧ 𝑞 ∈ 𝑉) → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ⊆ ((𝐵 × 𝐵) × 𝐵)) |
21 | 20 | iunssd 3944 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑉) → ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ⊆ ((𝐵 × 𝐵) × 𝐵)) |
22 | 21 | iunssd 3944 | . . 3 ⊢ (𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ⊆ ((𝐵 × 𝐵) × 𝐵)) |
23 | 3, 22 | eqsstrd 3203 | . 2 ⊢ (𝜑 → ∙ ⊆ ((𝐵 × 𝐵) × 𝐵)) |
24 | dff2 5673 | . 2 ⊢ ( ∙ :(𝐵 × 𝐵)⟶𝐵 ↔ ( ∙ Fn (𝐵 × 𝐵) ∧ ∙ ⊆ ((𝐵 × 𝐵) × 𝐵))) | |
25 | 6, 23, 24 | sylanbrc 417 | 1 ⊢ (𝜑 → ∙ :(𝐵 × 𝐵)⟶𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 979 = wceq 1363 ∈ wcel 2158 ⊆ wss 3141 {csn 3604 〈cop 3607 ∪ ciun 3898 × cxp 4636 Fn wfn 5223 ⟶wf 5224 –onto→wfo 5226 ‘cfv 5228 (class class class)co 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-ov 5891 |
This theorem is referenced by: imasaddf 12758 imasmulf 12761 qusaddflemg 12772 |
Copyright terms: Public domain | W3C validator |