ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasaddflemg GIF version

Theorem imasaddflemg 12902
Description: The image set operations are closed if the original operation is. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasaddf.f (𝜑𝐹:𝑉onto𝐵)
imasaddf.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
imasaddflem.a (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
imasaddfnlemg.v (𝜑𝑉𝑊)
imasaddfnlemg.x (𝜑·𝐶)
imasaddflem.c ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
Assertion
Ref Expression
imasaddflemg (𝜑 :(𝐵 × 𝐵)⟶𝐵)
Distinct variable groups:   𝑞,𝑝,𝐵   𝑎,𝑏,𝑝,𝑞,𝑉   · ,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   𝐶(𝑞,𝑝,𝑎,𝑏)   · (𝑎,𝑏)   𝑊(𝑞,𝑝,𝑎,𝑏)

Proof of Theorem imasaddflemg
StepHypRef Expression
1 imasaddf.f . . 3 (𝜑𝐹:𝑉onto𝐵)
2 imasaddf.e . . 3 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
3 imasaddflem.a . . 3 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
4 imasaddfnlemg.v . . 3 (𝜑𝑉𝑊)
5 imasaddfnlemg.x . . 3 (𝜑·𝐶)
61, 2, 3, 4, 5imasaddfnlemg 12900 . 2 (𝜑 Fn (𝐵 × 𝐵))
7 fof 5477 . . . . . . . . . 10 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
81, 7syl 14 . . . . . . . . 9 (𝜑𝐹:𝑉𝐵)
9 ffvelcdm 5692 . . . . . . . . . . 11 ((𝐹:𝑉𝐵𝑝𝑉) → (𝐹𝑝) ∈ 𝐵)
10 ffvelcdm 5692 . . . . . . . . . . 11 ((𝐹:𝑉𝐵𝑞𝑉) → (𝐹𝑞) ∈ 𝐵)
119, 10anim12dan 600 . . . . . . . . . 10 ((𝐹:𝑉𝐵 ∧ (𝑝𝑉𝑞𝑉)) → ((𝐹𝑝) ∈ 𝐵 ∧ (𝐹𝑞) ∈ 𝐵))
12 opelxpi 4692 . . . . . . . . . 10 (((𝐹𝑝) ∈ 𝐵 ∧ (𝐹𝑞) ∈ 𝐵) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ (𝐵 × 𝐵))
1311, 12syl 14 . . . . . . . . 9 ((𝐹:𝑉𝐵 ∧ (𝑝𝑉𝑞𝑉)) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ (𝐵 × 𝐵))
148, 13sylan 283 . . . . . . . 8 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ (𝐵 × 𝐵))
15 imasaddflem.c . . . . . . . . 9 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
16 ffvelcdm 5692 . . . . . . . . 9 ((𝐹:𝑉𝐵 ∧ (𝑝 · 𝑞) ∈ 𝑉) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
178, 15, 16syl2an2r 595 . . . . . . . 8 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1814, 17opelxpd 4693 . . . . . . 7 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ ((𝐵 × 𝐵) × 𝐵))
1918snssd 3764 . . . . . 6 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × 𝐵))
2019anassrs 400 . . . . 5 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × 𝐵))
2120iunssd 3959 . . . 4 ((𝜑𝑝𝑉) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × 𝐵))
2221iunssd 3959 . . 3 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × 𝐵))
233, 22eqsstrd 3216 . 2 (𝜑 ⊆ ((𝐵 × 𝐵) × 𝐵))
24 dff2 5703 . 2 ( :(𝐵 × 𝐵)⟶𝐵 ↔ ( Fn (𝐵 × 𝐵) ∧ ⊆ ((𝐵 × 𝐵) × 𝐵)))
256, 23, 24sylanbrc 417 1 (𝜑 :(𝐵 × 𝐵)⟶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wss 3154  {csn 3619  cop 3622   ciun 3913   × cxp 4658   Fn wfn 5250  wf 5251  ontowfo 5253  cfv 5255  (class class class)co 5919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922
This theorem is referenced by:  imasaddf  12905  imasmulf  12908  qusaddflemg  12920
  Copyright terms: Public domain W3C validator