ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgclb GIF version

Theorem tgclb 14652
Description: The property tgcl 14651 can be reversed: if the topology generated by 𝐵 is actually a topology, then 𝐵 must be a topological basis. This yields an alternative definition of TopBases. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgclb (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)

Proof of Theorem tgclb
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcl 14651 . 2 (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top)
2 df-topgen 13207 . . . . . . . . . . . . 13 topGen = (𝑥 ∈ V ↦ {𝑦𝑦 (𝑥 ∩ 𝒫 𝑦)})
32funmpt2 5329 . . . . . . . . . . . 12 Fun topGen
4 funrel 5307 . . . . . . . . . . . 12 (Fun topGen → Rel topGen)
53, 4ax-mp 5 . . . . . . . . . . 11 Rel topGen
6 0opn 14593 . . . . . . . . . . 11 ((topGen‘𝐵) ∈ Top → ∅ ∈ (topGen‘𝐵))
7 relelfvdm 5631 . . . . . . . . . . 11 ((Rel topGen ∧ ∅ ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen)
85, 6, 7sylancr 414 . . . . . . . . . 10 ((topGen‘𝐵) ∈ Top → 𝐵 ∈ dom topGen)
98elexd 2790 . . . . . . . . 9 ((topGen‘𝐵) ∈ Top → 𝐵 ∈ V)
10 bastg 14648 . . . . . . . . 9 (𝐵 ∈ V → 𝐵 ⊆ (topGen‘𝐵))
119, 10syl 14 . . . . . . . 8 ((topGen‘𝐵) ∈ Top → 𝐵 ⊆ (topGen‘𝐵))
1211sselda 3201 . . . . . . 7 (((topGen‘𝐵) ∈ Top ∧ 𝑥𝐵) → 𝑥 ∈ (topGen‘𝐵))
1311sselda 3201 . . . . . . 7 (((topGen‘𝐵) ∈ Top ∧ 𝑦𝐵) → 𝑦 ∈ (topGen‘𝐵))
1412, 13anim12dan 600 . . . . . 6 (((topGen‘𝐵) ∈ Top ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)))
15 inopn 14590 . . . . . . 7 (((topGen‘𝐵) ∈ Top ∧ 𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → (𝑥𝑦) ∈ (topGen‘𝐵))
16153expb 1207 . . . . . 6 (((topGen‘𝐵) ∈ Top ∧ (𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵))) → (𝑥𝑦) ∈ (topGen‘𝐵))
1714, 16syldan 282 . . . . 5 (((topGen‘𝐵) ∈ Top ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑦) ∈ (topGen‘𝐵))
18 tg2 14647 . . . . . 6 (((𝑥𝑦) ∈ (topGen‘𝐵) ∧ 𝑧 ∈ (𝑥𝑦)) → ∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
1918ralrimiva 2581 . . . . 5 ((𝑥𝑦) ∈ (topGen‘𝐵) → ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
2017, 19syl 14 . . . 4 (((topGen‘𝐵) ∈ Top ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
2120ralrimivva 2590 . . 3 ((topGen‘𝐵) ∈ Top → ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
22 isbasis2g 14632 . . . 4 (𝐵 ∈ V → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
239, 22syl 14 . . 3 ((topGen‘𝐵) ∈ Top → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
2421, 23mpbird 167 . 2 ((topGen‘𝐵) ∈ Top → 𝐵 ∈ TopBases)
251, 24impbii 126 1 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2178  {cab 2193  wral 2486  wrex 2487  Vcvv 2776  cin 3173  wss 3174  c0 3468  𝒫 cpw 3626   cuni 3864  dom cdm 4693  Rel wrel 4698  Fun wfun 5284  cfv 5290  topGenctg 13201  Topctop 14584  TopBasesctb 14629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-topgen 13207  df-top 14585  df-bases 14630
This theorem is referenced by:  bastop2  14671  tgcn  14795  tgcnp  14796
  Copyright terms: Public domain W3C validator