ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgclb GIF version

Theorem tgclb 13136
Description: The property tgcl 13135 can be reversed: if the topology generated by 𝐵 is actually a topology, then 𝐵 must be a topological basis. This yields an alternative definition of TopBases. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgclb (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)

Proof of Theorem tgclb
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcl 13135 . 2 (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top)
2 df-topgen 12631 . . . . . . . . . . . . 13 topGen = (𝑥 ∈ V ↦ {𝑦𝑦 (𝑥 ∩ 𝒫 𝑦)})
32funmpt2 5247 . . . . . . . . . . . 12 Fun topGen
4 funrel 5225 . . . . . . . . . . . 12 (Fun topGen → Rel topGen)
53, 4ax-mp 5 . . . . . . . . . . 11 Rel topGen
6 0opn 13075 . . . . . . . . . . 11 ((topGen‘𝐵) ∈ Top → ∅ ∈ (topGen‘𝐵))
7 relelfvdm 5539 . . . . . . . . . . 11 ((Rel topGen ∧ ∅ ∈ (topGen‘𝐵)) → 𝐵 ∈ dom topGen)
85, 6, 7sylancr 414 . . . . . . . . . 10 ((topGen‘𝐵) ∈ Top → 𝐵 ∈ dom topGen)
98elexd 2748 . . . . . . . . 9 ((topGen‘𝐵) ∈ Top → 𝐵 ∈ V)
10 bastg 13132 . . . . . . . . 9 (𝐵 ∈ V → 𝐵 ⊆ (topGen‘𝐵))
119, 10syl 14 . . . . . . . 8 ((topGen‘𝐵) ∈ Top → 𝐵 ⊆ (topGen‘𝐵))
1211sselda 3153 . . . . . . 7 (((topGen‘𝐵) ∈ Top ∧ 𝑥𝐵) → 𝑥 ∈ (topGen‘𝐵))
1311sselda 3153 . . . . . . 7 (((topGen‘𝐵) ∈ Top ∧ 𝑦𝐵) → 𝑦 ∈ (topGen‘𝐵))
1412, 13anim12dan 600 . . . . . 6 (((topGen‘𝐵) ∈ Top ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)))
15 inopn 13072 . . . . . . 7 (((topGen‘𝐵) ∈ Top ∧ 𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → (𝑥𝑦) ∈ (topGen‘𝐵))
16153expb 1204 . . . . . 6 (((topGen‘𝐵) ∈ Top ∧ (𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵))) → (𝑥𝑦) ∈ (topGen‘𝐵))
1714, 16syldan 282 . . . . 5 (((topGen‘𝐵) ∈ Top ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑦) ∈ (topGen‘𝐵))
18 tg2 13131 . . . . . 6 (((𝑥𝑦) ∈ (topGen‘𝐵) ∧ 𝑧 ∈ (𝑥𝑦)) → ∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
1918ralrimiva 2548 . . . . 5 ((𝑥𝑦) ∈ (topGen‘𝐵) → ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
2017, 19syl 14 . . . 4 (((topGen‘𝐵) ∈ Top ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
2120ralrimivva 2557 . . 3 ((topGen‘𝐵) ∈ Top → ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))
22 isbasis2g 13114 . . . 4 (𝐵 ∈ V → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
239, 22syl 14 . . 3 ((topGen‘𝐵) ∈ Top → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
2421, 23mpbird 167 . 2 ((topGen‘𝐵) ∈ Top → 𝐵 ∈ TopBases)
251, 24impbii 126 1 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2146  {cab 2161  wral 2453  wrex 2454  Vcvv 2735  cin 3126  wss 3127  c0 3420  𝒫 cpw 3572   cuni 3805  dom cdm 4620  Rel wrel 4625  Fun wfun 5202  cfv 5208  topGenctg 12625  Topctop 13066  TopBasesctb 13111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-topgen 12631  df-top 13067  df-bases 13112
This theorem is referenced by:  bastop2  13155  tgcn  13279  tgcnp  13280
  Copyright terms: Public domain W3C validator