ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oiso2 GIF version

Theorem f1oiso2 5806
Description: Any one-to-one onto function determines an isomorphism with an induced relation 𝑆. (Contributed by Mario Carneiro, 9-Mar-2013.)
Hypothesis
Ref Expression
f1oiso2.1 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦))}
Assertion
Ref Expression
f1oiso2 (𝐻:𝐴1-1-onto𝐵𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐻,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)

Proof of Theorem f1oiso2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oiso2.1 . . 3 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦))}
2 f1ocnvdm 5760 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵𝑥𝐵) → (𝐻𝑥) ∈ 𝐴)
32adantrr 476 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻𝑥) ∈ 𝐴)
433adant3 1012 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) → (𝐻𝑥) ∈ 𝐴)
5 f1ocnvdm 5760 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵𝑦𝐵) → (𝐻𝑦) ∈ 𝐴)
65adantrl 475 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻𝑦) ∈ 𝐴)
763adant3 1012 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) → (𝐻𝑦) ∈ 𝐴)
8 f1ocnvfv2 5757 . . . . . . . . . . 11 ((𝐻:𝐴1-1-onto𝐵𝑥𝐵) → (𝐻‘(𝐻𝑥)) = 𝑥)
98eqcomd 2176 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵𝑥𝐵) → 𝑥 = (𝐻‘(𝐻𝑥)))
10 f1ocnvfv2 5757 . . . . . . . . . . 11 ((𝐻:𝐴1-1-onto𝐵𝑦𝐵) → (𝐻‘(𝐻𝑦)) = 𝑦)
1110eqcomd 2176 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵𝑦𝐵) → 𝑦 = (𝐻‘(𝐻𝑦)))
129, 11anim12dan 595 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻‘(𝐻𝑦))))
13123adant3 1012 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) → (𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻‘(𝐻𝑦))))
14 simp3 994 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) → (𝐻𝑥)𝑅(𝐻𝑦))
15 fveq2 5496 . . . . . . . . . . . 12 (𝑤 = (𝐻𝑦) → (𝐻𝑤) = (𝐻‘(𝐻𝑦)))
1615eqeq2d 2182 . . . . . . . . . . 11 (𝑤 = (𝐻𝑦) → (𝑦 = (𝐻𝑤) ↔ 𝑦 = (𝐻‘(𝐻𝑦))))
1716anbi2d 461 . . . . . . . . . 10 (𝑤 = (𝐻𝑦) → ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤)) ↔ (𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻‘(𝐻𝑦)))))
18 breq2 3993 . . . . . . . . . 10 (𝑤 = (𝐻𝑦) → ((𝐻𝑥)𝑅𝑤 ↔ (𝐻𝑥)𝑅(𝐻𝑦)))
1917, 18anbi12d 470 . . . . . . . . 9 (𝑤 = (𝐻𝑦) → (((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤)) ∧ (𝐻𝑥)𝑅𝑤) ↔ ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻‘(𝐻𝑦))) ∧ (𝐻𝑥)𝑅(𝐻𝑦))))
2019rspcev 2834 . . . . . . . 8 (((𝐻𝑦) ∈ 𝐴 ∧ ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻‘(𝐻𝑦))) ∧ (𝐻𝑥)𝑅(𝐻𝑦))) → ∃𝑤𝐴 ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤)) ∧ (𝐻𝑥)𝑅𝑤))
217, 13, 14, 20syl12anc 1231 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) → ∃𝑤𝐴 ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤)) ∧ (𝐻𝑥)𝑅𝑤))
22 fveq2 5496 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑥) → (𝐻𝑧) = (𝐻‘(𝐻𝑥)))
2322eqeq2d 2182 . . . . . . . . . . 11 (𝑧 = (𝐻𝑥) → (𝑥 = (𝐻𝑧) ↔ 𝑥 = (𝐻‘(𝐻𝑥))))
2423anbi1d 462 . . . . . . . . . 10 (𝑧 = (𝐻𝑥) → ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ↔ (𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤))))
25 breq1 3992 . . . . . . . . . 10 (𝑧 = (𝐻𝑥) → (𝑧𝑅𝑤 ↔ (𝐻𝑥)𝑅𝑤))
2624, 25anbi12d 470 . . . . . . . . 9 (𝑧 = (𝐻𝑥) → (((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤) ↔ ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤)) ∧ (𝐻𝑥)𝑅𝑤)))
2726rexbidv 2471 . . . . . . . 8 (𝑧 = (𝐻𝑥) → (∃𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤) ↔ ∃𝑤𝐴 ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤)) ∧ (𝐻𝑥)𝑅𝑤)))
2827rspcev 2834 . . . . . . 7 (((𝐻𝑥) ∈ 𝐴 ∧ ∃𝑤𝐴 ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤)) ∧ (𝐻𝑥)𝑅𝑤)) → ∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤))
294, 21, 28syl2anc 409 . . . . . 6 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) → ∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤))
30293expib 1201 . . . . 5 (𝐻:𝐴1-1-onto𝐵 → (((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) → ∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)))
31 simp3ll 1063 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑥 = (𝐻𝑧))
32 simp1 992 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝐻:𝐴1-1-onto𝐵)
33 simp2l 1018 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑧𝐴)
34 f1of 5442 . . . . . . . . . . 11 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
3534ffvelrnda 5631 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵𝑧𝐴) → (𝐻𝑧) ∈ 𝐵)
3632, 33, 35syl2anc 409 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻𝑧) ∈ 𝐵)
3731, 36eqeltrd 2247 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑥𝐵)
38 simp3lr 1064 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑦 = (𝐻𝑤))
39 simp2r 1019 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑤𝐴)
4034ffvelrnda 5631 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵𝑤𝐴) → (𝐻𝑤) ∈ 𝐵)
4132, 39, 40syl2anc 409 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻𝑤) ∈ 𝐵)
4238, 41eqeltrd 2247 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑦𝐵)
43 simp3r 1021 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑧𝑅𝑤)
4431eqcomd 2176 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻𝑧) = 𝑥)
45 f1ocnvfv 5758 . . . . . . . . . . 11 ((𝐻:𝐴1-1-onto𝐵𝑧𝐴) → ((𝐻𝑧) = 𝑥 → (𝐻𝑥) = 𝑧))
4632, 33, 45syl2anc 409 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → ((𝐻𝑧) = 𝑥 → (𝐻𝑥) = 𝑧))
4744, 46mpd 13 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻𝑥) = 𝑧)
4838eqcomd 2176 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻𝑤) = 𝑦)
49 f1ocnvfv 5758 . . . . . . . . . . 11 ((𝐻:𝐴1-1-onto𝐵𝑤𝐴) → ((𝐻𝑤) = 𝑦 → (𝐻𝑦) = 𝑤))
5032, 39, 49syl2anc 409 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → ((𝐻𝑤) = 𝑦 → (𝐻𝑦) = 𝑤))
5148, 50mpd 13 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻𝑦) = 𝑤)
5243, 47, 513brtr4d 4021 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻𝑥)𝑅(𝐻𝑦))
5337, 42, 52jca31 307 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → ((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)))
54533exp 1197 . . . . . 6 (𝐻:𝐴1-1-onto𝐵 → ((𝑧𝐴𝑤𝐴) → (((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤) → ((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)))))
5554rexlimdvv 2594 . . . . 5 (𝐻:𝐴1-1-onto𝐵 → (∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤) → ((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦))))
5630, 55impbid 128 . . . 4 (𝐻:𝐴1-1-onto𝐵 → (((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) ↔ ∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)))
5756opabbidv 4055 . . 3 (𝐻:𝐴1-1-onto𝐵 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)})
581, 57eqtrid 2215 . 2 (𝐻:𝐴1-1-onto𝐵𝑆 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)})
59 f1oiso 5805 . 2 ((𝐻:𝐴1-1-onto𝐵𝑆 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)}) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
6058, 59mpdan 419 1 (𝐻:𝐴1-1-onto𝐵𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  wrex 2449   class class class wbr 3989  {copab 4049  ccnv 4610  1-1-ontowf1o 5197  cfv 5198   Isom wiso 5199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator