Step | Hyp | Ref
| Expression |
1 | | f1oiso2.1 |
. . 3
⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦))} |
2 | | f1ocnvdm 5760 |
. . . . . . . . 9
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐵) → (◡𝐻‘𝑥) ∈ 𝐴) |
3 | 2 | adantrr 476 |
. . . . . . . 8
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (◡𝐻‘𝑥) ∈ 𝐴) |
4 | 3 | 3adant3 1012 |
. . . . . . 7
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦)) → (◡𝐻‘𝑥) ∈ 𝐴) |
5 | | f1ocnvdm 5760 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑦 ∈ 𝐵) → (◡𝐻‘𝑦) ∈ 𝐴) |
6 | 5 | adantrl 475 |
. . . . . . . . 9
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (◡𝐻‘𝑦) ∈ 𝐴) |
7 | 6 | 3adant3 1012 |
. . . . . . . 8
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦)) → (◡𝐻‘𝑦) ∈ 𝐴) |
8 | | f1ocnvfv2 5757 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐵) → (𝐻‘(◡𝐻‘𝑥)) = 𝑥) |
9 | 8 | eqcomd 2176 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐵) → 𝑥 = (𝐻‘(◡𝐻‘𝑥))) |
10 | | f1ocnvfv2 5757 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑦 ∈ 𝐵) → (𝐻‘(◡𝐻‘𝑦)) = 𝑦) |
11 | 10 | eqcomd 2176 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 = (𝐻‘(◡𝐻‘𝑦))) |
12 | 9, 11 | anim12dan 595 |
. . . . . . . . 9
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 = (𝐻‘(◡𝐻‘𝑥)) ∧ 𝑦 = (𝐻‘(◡𝐻‘𝑦)))) |
13 | 12 | 3adant3 1012 |
. . . . . . . 8
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦)) → (𝑥 = (𝐻‘(◡𝐻‘𝑥)) ∧ 𝑦 = (𝐻‘(◡𝐻‘𝑦)))) |
14 | | simp3 994 |
. . . . . . . 8
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦)) → (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦)) |
15 | | fveq2 5496 |
. . . . . . . . . . . 12
⊢ (𝑤 = (◡𝐻‘𝑦) → (𝐻‘𝑤) = (𝐻‘(◡𝐻‘𝑦))) |
16 | 15 | eqeq2d 2182 |
. . . . . . . . . . 11
⊢ (𝑤 = (◡𝐻‘𝑦) → (𝑦 = (𝐻‘𝑤) ↔ 𝑦 = (𝐻‘(◡𝐻‘𝑦)))) |
17 | 16 | anbi2d 461 |
. . . . . . . . . 10
⊢ (𝑤 = (◡𝐻‘𝑦) → ((𝑥 = (𝐻‘(◡𝐻‘𝑥)) ∧ 𝑦 = (𝐻‘𝑤)) ↔ (𝑥 = (𝐻‘(◡𝐻‘𝑥)) ∧ 𝑦 = (𝐻‘(◡𝐻‘𝑦))))) |
18 | | breq2 3993 |
. . . . . . . . . 10
⊢ (𝑤 = (◡𝐻‘𝑦) → ((◡𝐻‘𝑥)𝑅𝑤 ↔ (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦))) |
19 | 17, 18 | anbi12d 470 |
. . . . . . . . 9
⊢ (𝑤 = (◡𝐻‘𝑦) → (((𝑥 = (𝐻‘(◡𝐻‘𝑥)) ∧ 𝑦 = (𝐻‘𝑤)) ∧ (◡𝐻‘𝑥)𝑅𝑤) ↔ ((𝑥 = (𝐻‘(◡𝐻‘𝑥)) ∧ 𝑦 = (𝐻‘(◡𝐻‘𝑦))) ∧ (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦)))) |
20 | 19 | rspcev 2834 |
. . . . . . . 8
⊢ (((◡𝐻‘𝑦) ∈ 𝐴 ∧ ((𝑥 = (𝐻‘(◡𝐻‘𝑥)) ∧ 𝑦 = (𝐻‘(◡𝐻‘𝑦))) ∧ (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦))) → ∃𝑤 ∈ 𝐴 ((𝑥 = (𝐻‘(◡𝐻‘𝑥)) ∧ 𝑦 = (𝐻‘𝑤)) ∧ (◡𝐻‘𝑥)𝑅𝑤)) |
21 | 7, 13, 14, 20 | syl12anc 1231 |
. . . . . . 7
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦)) → ∃𝑤 ∈ 𝐴 ((𝑥 = (𝐻‘(◡𝐻‘𝑥)) ∧ 𝑦 = (𝐻‘𝑤)) ∧ (◡𝐻‘𝑥)𝑅𝑤)) |
22 | | fveq2 5496 |
. . . . . . . . . . . 12
⊢ (𝑧 = (◡𝐻‘𝑥) → (𝐻‘𝑧) = (𝐻‘(◡𝐻‘𝑥))) |
23 | 22 | eqeq2d 2182 |
. . . . . . . . . . 11
⊢ (𝑧 = (◡𝐻‘𝑥) → (𝑥 = (𝐻‘𝑧) ↔ 𝑥 = (𝐻‘(◡𝐻‘𝑥)))) |
24 | 23 | anbi1d 462 |
. . . . . . . . . 10
⊢ (𝑧 = (◡𝐻‘𝑥) → ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ↔ (𝑥 = (𝐻‘(◡𝐻‘𝑥)) ∧ 𝑦 = (𝐻‘𝑤)))) |
25 | | breq1 3992 |
. . . . . . . . . 10
⊢ (𝑧 = (◡𝐻‘𝑥) → (𝑧𝑅𝑤 ↔ (◡𝐻‘𝑥)𝑅𝑤)) |
26 | 24, 25 | anbi12d 470 |
. . . . . . . . 9
⊢ (𝑧 = (◡𝐻‘𝑥) → (((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤) ↔ ((𝑥 = (𝐻‘(◡𝐻‘𝑥)) ∧ 𝑦 = (𝐻‘𝑤)) ∧ (◡𝐻‘𝑥)𝑅𝑤))) |
27 | 26 | rexbidv 2471 |
. . . . . . . 8
⊢ (𝑧 = (◡𝐻‘𝑥) → (∃𝑤 ∈ 𝐴 ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤) ↔ ∃𝑤 ∈ 𝐴 ((𝑥 = (𝐻‘(◡𝐻‘𝑥)) ∧ 𝑦 = (𝐻‘𝑤)) ∧ (◡𝐻‘𝑥)𝑅𝑤))) |
28 | 27 | rspcev 2834 |
. . . . . . 7
⊢ (((◡𝐻‘𝑥) ∈ 𝐴 ∧ ∃𝑤 ∈ 𝐴 ((𝑥 = (𝐻‘(◡𝐻‘𝑥)) ∧ 𝑦 = (𝐻‘𝑤)) ∧ (◡𝐻‘𝑥)𝑅𝑤)) → ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)) |
29 | 4, 21, 28 | syl2anc 409 |
. . . . . 6
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦)) → ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)) |
30 | 29 | 3expib 1201 |
. . . . 5
⊢ (𝐻:𝐴–1-1-onto→𝐵 → (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦)) → ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤))) |
31 | | simp3ll 1063 |
. . . . . . . . 9
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑥 = (𝐻‘𝑧)) |
32 | | simp1 992 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)) → 𝐻:𝐴–1-1-onto→𝐵) |
33 | | simp2l 1018 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑧 ∈ 𝐴) |
34 | | f1of 5442 |
. . . . . . . . . . 11
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴⟶𝐵) |
35 | 34 | ffvelrnda 5631 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑧 ∈ 𝐴) → (𝐻‘𝑧) ∈ 𝐵) |
36 | 32, 33, 35 | syl2anc 409 |
. . . . . . . . 9
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻‘𝑧) ∈ 𝐵) |
37 | 31, 36 | eqeltrd 2247 |
. . . . . . . 8
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑥 ∈ 𝐵) |
38 | | simp3lr 1064 |
. . . . . . . . 9
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑦 = (𝐻‘𝑤)) |
39 | | simp2r 1019 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑤 ∈ 𝐴) |
40 | 34 | ffvelrnda 5631 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑤 ∈ 𝐴) → (𝐻‘𝑤) ∈ 𝐵) |
41 | 32, 39, 40 | syl2anc 409 |
. . . . . . . . 9
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻‘𝑤) ∈ 𝐵) |
42 | 38, 41 | eqeltrd 2247 |
. . . . . . . 8
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑦 ∈ 𝐵) |
43 | | simp3r 1021 |
. . . . . . . . 9
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑧𝑅𝑤) |
44 | 31 | eqcomd 2176 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻‘𝑧) = 𝑥) |
45 | | f1ocnvfv 5758 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑧 ∈ 𝐴) → ((𝐻‘𝑧) = 𝑥 → (◡𝐻‘𝑥) = 𝑧)) |
46 | 32, 33, 45 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)) → ((𝐻‘𝑧) = 𝑥 → (◡𝐻‘𝑥) = 𝑧)) |
47 | 44, 46 | mpd 13 |
. . . . . . . . 9
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)) → (◡𝐻‘𝑥) = 𝑧) |
48 | 38 | eqcomd 2176 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻‘𝑤) = 𝑦) |
49 | | f1ocnvfv 5758 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑤 ∈ 𝐴) → ((𝐻‘𝑤) = 𝑦 → (◡𝐻‘𝑦) = 𝑤)) |
50 | 32, 39, 49 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)) → ((𝐻‘𝑤) = 𝑦 → (◡𝐻‘𝑦) = 𝑤)) |
51 | 48, 50 | mpd 13 |
. . . . . . . . 9
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)) → (◡𝐻‘𝑦) = 𝑤) |
52 | 43, 47, 51 | 3brtr4d 4021 |
. . . . . . . 8
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)) → (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦)) |
53 | 37, 42, 52 | jca31 307 |
. . . . . . 7
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦))) |
54 | 53 | 3exp 1197 |
. . . . . 6
⊢ (𝐻:𝐴–1-1-onto→𝐵 → ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦))))) |
55 | 54 | rexlimdvv 2594 |
. . . . 5
⊢ (𝐻:𝐴–1-1-onto→𝐵 → (∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦)))) |
56 | 30, 55 | impbid 128 |
. . . 4
⊢ (𝐻:𝐴–1-1-onto→𝐵 → (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦)) ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤))) |
57 | 56 | opabbidv 4055 |
. . 3
⊢ (𝐻:𝐴–1-1-onto→𝐵 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦))} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)}) |
58 | 1, 57 | eqtrid 2215 |
. 2
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝑆 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)}) |
59 | | f1oiso 5805 |
. 2
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑆 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 ((𝑥 = (𝐻‘𝑧) ∧ 𝑦 = (𝐻‘𝑤)) ∧ 𝑧𝑅𝑤)}) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
60 | 58, 59 | mpdan 419 |
1
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |