ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oiso2 GIF version

Theorem f1oiso2 5795
Description: Any one-to-one onto function determines an isomorphism with an induced relation 𝑆. (Contributed by Mario Carneiro, 9-Mar-2013.)
Hypothesis
Ref Expression
f1oiso2.1 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦))}
Assertion
Ref Expression
f1oiso2 (𝐻:𝐴1-1-onto𝐵𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐻,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)

Proof of Theorem f1oiso2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oiso2.1 . . 3 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦))}
2 f1ocnvdm 5749 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵𝑥𝐵) → (𝐻𝑥) ∈ 𝐴)
32adantrr 471 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻𝑥) ∈ 𝐴)
433adant3 1007 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) → (𝐻𝑥) ∈ 𝐴)
5 f1ocnvdm 5749 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵𝑦𝐵) → (𝐻𝑦) ∈ 𝐴)
65adantrl 470 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵)) → (𝐻𝑦) ∈ 𝐴)
763adant3 1007 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) → (𝐻𝑦) ∈ 𝐴)
8 f1ocnvfv2 5746 . . . . . . . . . . 11 ((𝐻:𝐴1-1-onto𝐵𝑥𝐵) → (𝐻‘(𝐻𝑥)) = 𝑥)
98eqcomd 2171 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵𝑥𝐵) → 𝑥 = (𝐻‘(𝐻𝑥)))
10 f1ocnvfv2 5746 . . . . . . . . . . 11 ((𝐻:𝐴1-1-onto𝐵𝑦𝐵) → (𝐻‘(𝐻𝑦)) = 𝑦)
1110eqcomd 2171 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵𝑦𝐵) → 𝑦 = (𝐻‘(𝐻𝑦)))
129, 11anim12dan 590 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻‘(𝐻𝑦))))
13123adant3 1007 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) → (𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻‘(𝐻𝑦))))
14 simp3 989 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) → (𝐻𝑥)𝑅(𝐻𝑦))
15 fveq2 5486 . . . . . . . . . . . 12 (𝑤 = (𝐻𝑦) → (𝐻𝑤) = (𝐻‘(𝐻𝑦)))
1615eqeq2d 2177 . . . . . . . . . . 11 (𝑤 = (𝐻𝑦) → (𝑦 = (𝐻𝑤) ↔ 𝑦 = (𝐻‘(𝐻𝑦))))
1716anbi2d 460 . . . . . . . . . 10 (𝑤 = (𝐻𝑦) → ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤)) ↔ (𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻‘(𝐻𝑦)))))
18 breq2 3986 . . . . . . . . . 10 (𝑤 = (𝐻𝑦) → ((𝐻𝑥)𝑅𝑤 ↔ (𝐻𝑥)𝑅(𝐻𝑦)))
1917, 18anbi12d 465 . . . . . . . . 9 (𝑤 = (𝐻𝑦) → (((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤)) ∧ (𝐻𝑥)𝑅𝑤) ↔ ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻‘(𝐻𝑦))) ∧ (𝐻𝑥)𝑅(𝐻𝑦))))
2019rspcev 2830 . . . . . . . 8 (((𝐻𝑦) ∈ 𝐴 ∧ ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻‘(𝐻𝑦))) ∧ (𝐻𝑥)𝑅(𝐻𝑦))) → ∃𝑤𝐴 ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤)) ∧ (𝐻𝑥)𝑅𝑤))
217, 13, 14, 20syl12anc 1226 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) → ∃𝑤𝐴 ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤)) ∧ (𝐻𝑥)𝑅𝑤))
22 fveq2 5486 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑥) → (𝐻𝑧) = (𝐻‘(𝐻𝑥)))
2322eqeq2d 2177 . . . . . . . . . . 11 (𝑧 = (𝐻𝑥) → (𝑥 = (𝐻𝑧) ↔ 𝑥 = (𝐻‘(𝐻𝑥))))
2423anbi1d 461 . . . . . . . . . 10 (𝑧 = (𝐻𝑥) → ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ↔ (𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤))))
25 breq1 3985 . . . . . . . . . 10 (𝑧 = (𝐻𝑥) → (𝑧𝑅𝑤 ↔ (𝐻𝑥)𝑅𝑤))
2624, 25anbi12d 465 . . . . . . . . 9 (𝑧 = (𝐻𝑥) → (((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤) ↔ ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤)) ∧ (𝐻𝑥)𝑅𝑤)))
2726rexbidv 2467 . . . . . . . 8 (𝑧 = (𝐻𝑥) → (∃𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤) ↔ ∃𝑤𝐴 ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤)) ∧ (𝐻𝑥)𝑅𝑤)))
2827rspcev 2830 . . . . . . 7 (((𝐻𝑥) ∈ 𝐴 ∧ ∃𝑤𝐴 ((𝑥 = (𝐻‘(𝐻𝑥)) ∧ 𝑦 = (𝐻𝑤)) ∧ (𝐻𝑥)𝑅𝑤)) → ∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤))
294, 21, 28syl2anc 409 . . . . . 6 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) → ∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤))
30293expib 1196 . . . . 5 (𝐻:𝐴1-1-onto𝐵 → (((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) → ∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)))
31 simp3ll 1058 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑥 = (𝐻𝑧))
32 simp1 987 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝐻:𝐴1-1-onto𝐵)
33 simp2l 1013 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑧𝐴)
34 f1of 5432 . . . . . . . . . . 11 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
3534ffvelrnda 5620 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵𝑧𝐴) → (𝐻𝑧) ∈ 𝐵)
3632, 33, 35syl2anc 409 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻𝑧) ∈ 𝐵)
3731, 36eqeltrd 2243 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑥𝐵)
38 simp3lr 1059 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑦 = (𝐻𝑤))
39 simp2r 1014 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑤𝐴)
4034ffvelrnda 5620 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵𝑤𝐴) → (𝐻𝑤) ∈ 𝐵)
4132, 39, 40syl2anc 409 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻𝑤) ∈ 𝐵)
4238, 41eqeltrd 2243 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑦𝐵)
43 simp3r 1016 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → 𝑧𝑅𝑤)
4431eqcomd 2171 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻𝑧) = 𝑥)
45 f1ocnvfv 5747 . . . . . . . . . . 11 ((𝐻:𝐴1-1-onto𝐵𝑧𝐴) → ((𝐻𝑧) = 𝑥 → (𝐻𝑥) = 𝑧))
4632, 33, 45syl2anc 409 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → ((𝐻𝑧) = 𝑥 → (𝐻𝑥) = 𝑧))
4744, 46mpd 13 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻𝑥) = 𝑧)
4838eqcomd 2171 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻𝑤) = 𝑦)
49 f1ocnvfv 5747 . . . . . . . . . . 11 ((𝐻:𝐴1-1-onto𝐵𝑤𝐴) → ((𝐻𝑤) = 𝑦 → (𝐻𝑦) = 𝑤))
5032, 39, 49syl2anc 409 . . . . . . . . . 10 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → ((𝐻𝑤) = 𝑦 → (𝐻𝑦) = 𝑤))
5148, 50mpd 13 . . . . . . . . 9 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻𝑦) = 𝑤)
5243, 47, 513brtr4d 4014 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → (𝐻𝑥)𝑅(𝐻𝑦))
5337, 42, 52jca31 307 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐴𝑤𝐴) ∧ ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)) → ((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)))
54533exp 1192 . . . . . 6 (𝐻:𝐴1-1-onto𝐵 → ((𝑧𝐴𝑤𝐴) → (((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤) → ((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)))))
5554rexlimdvv 2590 . . . . 5 (𝐻:𝐴1-1-onto𝐵 → (∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤) → ((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦))))
5630, 55impbid 128 . . . 4 (𝐻:𝐴1-1-onto𝐵 → (((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦)) ↔ ∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)))
5756opabbidv 4048 . . 3 (𝐻:𝐴1-1-onto𝐵 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)})
581, 57syl5eq 2211 . 2 (𝐻:𝐴1-1-onto𝐵𝑆 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)})
59 f1oiso 5794 . 2 ((𝐻:𝐴1-1-onto𝐵𝑆 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴𝑤𝐴 ((𝑥 = (𝐻𝑧) ∧ 𝑦 = (𝐻𝑤)) ∧ 𝑧𝑅𝑤)}) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
6058, 59mpdan 418 1 (𝐻:𝐴1-1-onto𝐵𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136  wrex 2445   class class class wbr 3982  {copab 4042  ccnv 4603  1-1-ontowf1o 5187  cfv 5188   Isom wiso 5189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator