Proof of Theorem invrpropdg
| Step | Hyp | Ref
 | Expression | 
| 1 |   | eqidd 2197 | 
. . . 4
⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐾)) | 
| 2 |   | eqidd 2197 | 
. . . 4
⊢ (𝜑 → ((mulGrp‘𝐾) ↾s
(Unit‘𝐾)) =
((mulGrp‘𝐾)
↾s (Unit‘𝐾))) | 
| 3 |   | unitpropdg.k | 
. . . . 5
⊢ (𝜑 → 𝐾 ∈ Ring) | 
| 4 |   | ringsrg 13603 | 
. . . . 5
⊢ (𝐾 ∈ Ring → 𝐾 ∈ SRing) | 
| 5 | 3, 4 | syl 14 | 
. . . 4
⊢ (𝜑 → 𝐾 ∈ SRing) | 
| 6 | 1, 2, 5 | unitgrpbasd 13671 | 
. . 3
⊢ (𝜑 → (Unit‘𝐾) =
(Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))) | 
| 7 |   | unitpropdg.1 | 
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | 
| 8 |   | unitpropdg.2 | 
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | 
| 9 |   | unitpropdg.3 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | 
| 10 |   | unitpropdg.l | 
. . . . 5
⊢ (𝜑 → 𝐿 ∈ Ring) | 
| 11 | 7, 8, 9, 3, 10 | unitpropdg 13704 | 
. . . 4
⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) | 
| 12 |   | eqidd 2197 | 
. . . . 5
⊢ (𝜑 → (Unit‘𝐿) = (Unit‘𝐿)) | 
| 13 |   | eqidd 2197 | 
. . . . 5
⊢ (𝜑 → ((mulGrp‘𝐿) ↾s
(Unit‘𝐿)) =
((mulGrp‘𝐿)
↾s (Unit‘𝐿))) | 
| 14 |   | ringsrg 13603 | 
. . . . . 6
⊢ (𝐿 ∈ Ring → 𝐿 ∈ SRing) | 
| 15 | 10, 14 | syl 14 | 
. . . . 5
⊢ (𝜑 → 𝐿 ∈ SRing) | 
| 16 | 12, 13, 15 | unitgrpbasd 13671 | 
. . . 4
⊢ (𝜑 → (Unit‘𝐿) =
(Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) | 
| 17 | 11, 16 | eqtrd 2229 | 
. . 3
⊢ (𝜑 → (Unit‘𝐾) =
(Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) | 
| 18 |   | eqid 2196 | 
. . . . . 6
⊢
(mulGrp‘𝐾) =
(mulGrp‘𝐾) | 
| 19 | 18 | ringmgp 13558 | 
. . . . 5
⊢ (𝐾 ∈ Ring →
(mulGrp‘𝐾) ∈
Mnd) | 
| 20 | 3, 19 | syl 14 | 
. . . 4
⊢ (𝜑 → (mulGrp‘𝐾) ∈ Mnd) | 
| 21 |   | basfn 12736 | 
. . . . . . 7
⊢ Base Fn
V | 
| 22 | 3 | elexd 2776 | 
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ V) | 
| 23 |   | funfvex 5575 | 
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝐾 ∈ dom
Base) → (Base‘𝐾)
∈ V) | 
| 24 | 23 | funfni 5358 | 
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝐾 ∈ V) →
(Base‘𝐾) ∈
V) | 
| 25 | 21, 22, 24 | sylancr 414 | 
. . . . . 6
⊢ (𝜑 → (Base‘𝐾) ∈ V) | 
| 26 | 7, 25 | eqeltrd 2273 | 
. . . . 5
⊢ (𝜑 → 𝐵 ∈ V) | 
| 27 | 7, 1, 5 | unitssd 13665 | 
. . . . 5
⊢ (𝜑 → (Unit‘𝐾) ⊆ 𝐵) | 
| 28 | 26, 27 | ssexd 4173 | 
. . . 4
⊢ (𝜑 → (Unit‘𝐾) ∈ V) | 
| 29 |   | ressex 12743 | 
. . . 4
⊢
(((mulGrp‘𝐾)
∈ Mnd ∧ (Unit‘𝐾) ∈ V) → ((mulGrp‘𝐾) ↾s
(Unit‘𝐾)) ∈
V) | 
| 30 | 20, 28, 29 | syl2anc 411 | 
. . 3
⊢ (𝜑 → ((mulGrp‘𝐾) ↾s
(Unit‘𝐾)) ∈
V) | 
| 31 |   | eqid 2196 | 
. . . . . 6
⊢
(mulGrp‘𝐿) =
(mulGrp‘𝐿) | 
| 32 | 31 | ringmgp 13558 | 
. . . . 5
⊢ (𝐿 ∈ Ring →
(mulGrp‘𝐿) ∈
Mnd) | 
| 33 | 10, 32 | syl 14 | 
. . . 4
⊢ (𝜑 → (mulGrp‘𝐿) ∈ Mnd) | 
| 34 | 11, 28 | eqeltrrd 2274 | 
. . . 4
⊢ (𝜑 → (Unit‘𝐿) ∈ V) | 
| 35 |   | ressex 12743 | 
. . . 4
⊢
(((mulGrp‘𝐿)
∈ Mnd ∧ (Unit‘𝐿) ∈ V) → ((mulGrp‘𝐿) ↾s
(Unit‘𝐿)) ∈
V) | 
| 36 | 33, 34, 35 | syl2anc 411 | 
. . 3
⊢ (𝜑 → ((mulGrp‘𝐿) ↾s
(Unit‘𝐿)) ∈
V) | 
| 37 | 27 | sselda 3183 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Unit‘𝐾)) → 𝑥 ∈ 𝐵) | 
| 38 | 27 | sselda 3183 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (Unit‘𝐾)) → 𝑦 ∈ 𝐵) | 
| 39 | 37, 38 | anim12dan 600 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) | 
| 40 | 39, 9 | syldan 282 | 
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | 
| 41 |   | eqid 2196 | 
. . . . . . . 8
⊢
(.r‘𝐾) = (.r‘𝐾) | 
| 42 | 18, 41 | mgpplusgg 13480 | 
. . . . . . 7
⊢ (𝐾 ∈ Ring →
(.r‘𝐾) =
(+g‘(mulGrp‘𝐾))) | 
| 43 | 3, 42 | syl 14 | 
. . . . . 6
⊢ (𝜑 → (.r‘𝐾) =
(+g‘(mulGrp‘𝐾))) | 
| 44 | 2, 43, 28, 20 | ressplusgd 12806 | 
. . . . 5
⊢ (𝜑 → (.r‘𝐾) =
(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))) | 
| 45 | 44 | oveqdr 5950 | 
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘((mulGrp‘𝐾) ↾s
(Unit‘𝐾)))𝑦)) | 
| 46 |   | eqid 2196 | 
. . . . . . . 8
⊢
(.r‘𝐿) = (.r‘𝐿) | 
| 47 | 31, 46 | mgpplusgg 13480 | 
. . . . . . 7
⊢ (𝐿 ∈ Ring →
(.r‘𝐿) =
(+g‘(mulGrp‘𝐿))) | 
| 48 | 10, 47 | syl 14 | 
. . . . . 6
⊢ (𝜑 → (.r‘𝐿) =
(+g‘(mulGrp‘𝐿))) | 
| 49 | 13, 48, 34, 33 | ressplusgd 12806 | 
. . . . 5
⊢ (𝜑 → (.r‘𝐿) =
(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) | 
| 50 | 49 | oveqdr 5950 | 
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s
(Unit‘𝐿)))𝑦)) | 
| 51 | 40, 45, 50 | 3eqtr3d 2237 | 
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(+g‘((mulGrp‘𝐾) ↾s
(Unit‘𝐾)))𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s
(Unit‘𝐿)))𝑦)) | 
| 52 | 6, 17, 30, 36, 51 | grpinvpropdg 13207 | 
. 2
⊢ (𝜑 →
(invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) =
(invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) | 
| 53 |   | eqidd 2197 | 
. . 3
⊢ (𝜑 →
(invr‘𝐾) =
(invr‘𝐾)) | 
| 54 | 1, 2, 53, 3 | invrfvald 13678 | 
. 2
⊢ (𝜑 →
(invr‘𝐾) =
(invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))) | 
| 55 |   | eqidd 2197 | 
. . 3
⊢ (𝜑 →
(invr‘𝐿) =
(invr‘𝐿)) | 
| 56 | 12, 13, 55, 10 | invrfvald 13678 | 
. 2
⊢ (𝜑 →
(invr‘𝐿) =
(invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) | 
| 57 | 52, 54, 56 | 3eqtr4d 2239 | 
1
⊢ (𝜑 →
(invr‘𝐾) =
(invr‘𝐿)) |