ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invrpropdg GIF version

Theorem invrpropdg 13882
Description: The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
unitpropdg.1 (𝜑𝐵 = (Base‘𝐾))
unitpropdg.2 (𝜑𝐵 = (Base‘𝐿))
unitpropdg.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
unitpropdg.k (𝜑𝐾 ∈ Ring)
unitpropdg.l (𝜑𝐿 ∈ Ring)
Assertion
Ref Expression
invrpropdg (𝜑 → (invr𝐾) = (invr𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem invrpropdg
StepHypRef Expression
1 eqidd 2205 . . . 4 (𝜑 → (Unit‘𝐾) = (Unit‘𝐾))
2 eqidd 2205 . . . 4 (𝜑 → ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) = ((mulGrp‘𝐾) ↾s (Unit‘𝐾)))
3 unitpropdg.k . . . . 5 (𝜑𝐾 ∈ Ring)
4 ringsrg 13780 . . . . 5 (𝐾 ∈ Ring → 𝐾 ∈ SRing)
53, 4syl 14 . . . 4 (𝜑𝐾 ∈ SRing)
61, 2, 5unitgrpbasd 13848 . . 3 (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))
7 unitpropdg.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
8 unitpropdg.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
9 unitpropdg.3 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
10 unitpropdg.l . . . . 5 (𝜑𝐿 ∈ Ring)
117, 8, 9, 3, 10unitpropdg 13881 . . . 4 (𝜑 → (Unit‘𝐾) = (Unit‘𝐿))
12 eqidd 2205 . . . . 5 (𝜑 → (Unit‘𝐿) = (Unit‘𝐿))
13 eqidd 2205 . . . . 5 (𝜑 → ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) = ((mulGrp‘𝐿) ↾s (Unit‘𝐿)))
14 ringsrg 13780 . . . . . 6 (𝐿 ∈ Ring → 𝐿 ∈ SRing)
1510, 14syl 14 . . . . 5 (𝜑𝐿 ∈ SRing)
1612, 13, 15unitgrpbasd 13848 . . . 4 (𝜑 → (Unit‘𝐿) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
1711, 16eqtrd 2237 . . 3 (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
18 eqid 2204 . . . . . 6 (mulGrp‘𝐾) = (mulGrp‘𝐾)
1918ringmgp 13735 . . . . 5 (𝐾 ∈ Ring → (mulGrp‘𝐾) ∈ Mnd)
203, 19syl 14 . . . 4 (𝜑 → (mulGrp‘𝐾) ∈ Mnd)
21 basfn 12861 . . . . . . 7 Base Fn V
223elexd 2784 . . . . . . 7 (𝜑𝐾 ∈ V)
23 funfvex 5592 . . . . . . . 8 ((Fun Base ∧ 𝐾 ∈ dom Base) → (Base‘𝐾) ∈ V)
2423funfni 5375 . . . . . . 7 ((Base Fn V ∧ 𝐾 ∈ V) → (Base‘𝐾) ∈ V)
2521, 22, 24sylancr 414 . . . . . 6 (𝜑 → (Base‘𝐾) ∈ V)
267, 25eqeltrd 2281 . . . . 5 (𝜑𝐵 ∈ V)
277, 1, 5unitssd 13842 . . . . 5 (𝜑 → (Unit‘𝐾) ⊆ 𝐵)
2826, 27ssexd 4183 . . . 4 (𝜑 → (Unit‘𝐾) ∈ V)
29 ressex 12868 . . . 4 (((mulGrp‘𝐾) ∈ Mnd ∧ (Unit‘𝐾) ∈ V) → ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) ∈ V)
3020, 28, 29syl2anc 411 . . 3 (𝜑 → ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) ∈ V)
31 eqid 2204 . . . . . 6 (mulGrp‘𝐿) = (mulGrp‘𝐿)
3231ringmgp 13735 . . . . 5 (𝐿 ∈ Ring → (mulGrp‘𝐿) ∈ Mnd)
3310, 32syl 14 . . . 4 (𝜑 → (mulGrp‘𝐿) ∈ Mnd)
3411, 28eqeltrrd 2282 . . . 4 (𝜑 → (Unit‘𝐿) ∈ V)
35 ressex 12868 . . . 4 (((mulGrp‘𝐿) ∈ Mnd ∧ (Unit‘𝐿) ∈ V) → ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) ∈ V)
3633, 34, 35syl2anc 411 . . 3 (𝜑 → ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) ∈ V)
3727sselda 3192 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘𝐾)) → 𝑥𝐵)
3827sselda 3192 . . . . . 6 ((𝜑𝑦 ∈ (Unit‘𝐾)) → 𝑦𝐵)
3937, 38anim12dan 600 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥𝐵𝑦𝐵))
4039, 9syldan 282 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
41 eqid 2204 . . . . . . . 8 (.r𝐾) = (.r𝐾)
4218, 41mgpplusgg 13657 . . . . . . 7 (𝐾 ∈ Ring → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
433, 42syl 14 . . . . . 6 (𝜑 → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
442, 43, 28, 20ressplusgd 12932 . . . . 5 (𝜑 → (.r𝐾) = (+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))
4544oveqdr 5971 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r𝐾)𝑦) = (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦))
46 eqid 2204 . . . . . . . 8 (.r𝐿) = (.r𝐿)
4731, 46mgpplusgg 13657 . . . . . . 7 (𝐿 ∈ Ring → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
4810, 47syl 14 . . . . . 6 (𝜑 → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
4913, 48, 34, 33ressplusgd 12932 . . . . 5 (𝜑 → (.r𝐿) = (+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
5049oveqdr 5971 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r𝐿)𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦))
5140, 45, 503eqtr3d 2245 . . 3 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦))
526, 17, 30, 36, 51grpinvpropdg 13378 . 2 (𝜑 → (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
53 eqidd 2205 . . 3 (𝜑 → (invr𝐾) = (invr𝐾))
541, 2, 53, 3invrfvald 13855 . 2 (𝜑 → (invr𝐾) = (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))
55 eqidd 2205 . . 3 (𝜑 → (invr𝐿) = (invr𝐿))
5612, 13, 55, 10invrfvald 13855 . 2 (𝜑 → (invr𝐿) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
5752, 54, 563eqtr4d 2247 1 (𝜑 → (invr𝐾) = (invr𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  Vcvv 2771   Fn wfn 5265  cfv 5270  (class class class)co 5943  Basecbs 12803  s cress 12804  +gcplusg 12880  .rcmulr 12881  Mndcmnd 13219  invgcminusg 13304  mulGrpcmgp 13653  SRingcsrg 13696  Ringcrg 13729  Unitcui 13820  invrcinvr 13853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-tpos 6330  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-iress 12811  df-plusg 12893  df-mulr 12894  df-0g 13061  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-grp 13306  df-minusg 13307  df-cmn 13593  df-abl 13594  df-mgp 13654  df-ur 13693  df-srg 13697  df-ring 13731  df-oppr 13801  df-dvdsr 13822  df-unit 13823  df-invr 13854
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator