ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invrpropdg GIF version

Theorem invrpropdg 13323
Description: The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
unitpropdg.1 (𝜑𝐵 = (Base‘𝐾))
unitpropdg.2 (𝜑𝐵 = (Base‘𝐿))
unitpropdg.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
unitpropdg.k (𝜑𝐾 ∈ Ring)
unitpropdg.l (𝜑𝐿 ∈ Ring)
Assertion
Ref Expression
invrpropdg (𝜑 → (invr𝐾) = (invr𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem invrpropdg
StepHypRef Expression
1 eqidd 2178 . . . 4 (𝜑 → (Unit‘𝐾) = (Unit‘𝐾))
2 eqidd 2178 . . . 4 (𝜑 → ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) = ((mulGrp‘𝐾) ↾s (Unit‘𝐾)))
3 unitpropdg.k . . . . 5 (𝜑𝐾 ∈ Ring)
4 ringsrg 13229 . . . . 5 (𝐾 ∈ Ring → 𝐾 ∈ SRing)
53, 4syl 14 . . . 4 (𝜑𝐾 ∈ SRing)
61, 2, 5unitgrpbasd 13289 . . 3 (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))
7 unitpropdg.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
8 unitpropdg.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
9 unitpropdg.3 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
10 unitpropdg.l . . . . 5 (𝜑𝐿 ∈ Ring)
117, 8, 9, 3, 10unitpropdg 13322 . . . 4 (𝜑 → (Unit‘𝐾) = (Unit‘𝐿))
12 eqidd 2178 . . . . 5 (𝜑 → (Unit‘𝐿) = (Unit‘𝐿))
13 eqidd 2178 . . . . 5 (𝜑 → ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) = ((mulGrp‘𝐿) ↾s (Unit‘𝐿)))
14 ringsrg 13229 . . . . . 6 (𝐿 ∈ Ring → 𝐿 ∈ SRing)
1510, 14syl 14 . . . . 5 (𝜑𝐿 ∈ SRing)
1612, 13, 15unitgrpbasd 13289 . . . 4 (𝜑 → (Unit‘𝐿) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
1711, 16eqtrd 2210 . . 3 (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
18 eqid 2177 . . . . . 6 (mulGrp‘𝐾) = (mulGrp‘𝐾)
1918ringmgp 13190 . . . . 5 (𝐾 ∈ Ring → (mulGrp‘𝐾) ∈ Mnd)
203, 19syl 14 . . . 4 (𝜑 → (mulGrp‘𝐾) ∈ Mnd)
21 basfn 12522 . . . . . . 7 Base Fn V
223elexd 2752 . . . . . . 7 (𝜑𝐾 ∈ V)
23 funfvex 5534 . . . . . . . 8 ((Fun Base ∧ 𝐾 ∈ dom Base) → (Base‘𝐾) ∈ V)
2423funfni 5318 . . . . . . 7 ((Base Fn V ∧ 𝐾 ∈ V) → (Base‘𝐾) ∈ V)
2521, 22, 24sylancr 414 . . . . . 6 (𝜑 → (Base‘𝐾) ∈ V)
267, 25eqeltrd 2254 . . . . 5 (𝜑𝐵 ∈ V)
277, 1, 5unitssd 13283 . . . . 5 (𝜑 → (Unit‘𝐾) ⊆ 𝐵)
2826, 27ssexd 4145 . . . 4 (𝜑 → (Unit‘𝐾) ∈ V)
29 ressex 12527 . . . 4 (((mulGrp‘𝐾) ∈ Mnd ∧ (Unit‘𝐾) ∈ V) → ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) ∈ V)
3020, 28, 29syl2anc 411 . . 3 (𝜑 → ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) ∈ V)
31 eqid 2177 . . . . . 6 (mulGrp‘𝐿) = (mulGrp‘𝐿)
3231ringmgp 13190 . . . . 5 (𝐿 ∈ Ring → (mulGrp‘𝐿) ∈ Mnd)
3310, 32syl 14 . . . 4 (𝜑 → (mulGrp‘𝐿) ∈ Mnd)
3411, 28eqeltrrd 2255 . . . 4 (𝜑 → (Unit‘𝐿) ∈ V)
35 ressex 12527 . . . 4 (((mulGrp‘𝐿) ∈ Mnd ∧ (Unit‘𝐿) ∈ V) → ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) ∈ V)
3633, 34, 35syl2anc 411 . . 3 (𝜑 → ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) ∈ V)
3727sselda 3157 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘𝐾)) → 𝑥𝐵)
3827sselda 3157 . . . . . 6 ((𝜑𝑦 ∈ (Unit‘𝐾)) → 𝑦𝐵)
3937, 38anim12dan 600 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥𝐵𝑦𝐵))
4039, 9syldan 282 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
41 eqid 2177 . . . . . . . 8 (.r𝐾) = (.r𝐾)
4218, 41mgpplusgg 13139 . . . . . . 7 (𝐾 ∈ Ring → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
433, 42syl 14 . . . . . 6 (𝜑 → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
442, 43, 28, 20ressplusgd 12589 . . . . 5 (𝜑 → (.r𝐾) = (+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))
4544oveqdr 5905 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r𝐾)𝑦) = (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦))
46 eqid 2177 . . . . . . . 8 (.r𝐿) = (.r𝐿)
4731, 46mgpplusgg 13139 . . . . . . 7 (𝐿 ∈ Ring → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
4810, 47syl 14 . . . . . 6 (𝜑 → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
4913, 48, 34, 33ressplusgd 12589 . . . . 5 (𝜑 → (.r𝐿) = (+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
5049oveqdr 5905 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r𝐿)𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦))
5140, 45, 503eqtr3d 2218 . . 3 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦))
526, 17, 30, 36, 51grpinvpropdg 12950 . 2 (𝜑 → (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
53 eqidd 2178 . . 3 (𝜑 → (invr𝐾) = (invr𝐾))
541, 2, 53, 3invrfvald 13296 . 2 (𝜑 → (invr𝐾) = (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))
55 eqidd 2178 . . 3 (𝜑 → (invr𝐿) = (invr𝐿))
5612, 13, 55, 10invrfvald 13296 . 2 (𝜑 → (invr𝐿) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
5752, 54, 563eqtr4d 2220 1 (𝜑 → (invr𝐾) = (invr𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  Vcvv 2739   Fn wfn 5213  cfv 5218  (class class class)co 5877  Basecbs 12464  s cress 12465  +gcplusg 12538  .rcmulr 12539  Mndcmnd 12822  invgcminusg 12883  mulGrpcmgp 13135  SRingcsrg 13151  Ringcrg 13184  Unitcui 13261  invrcinvr 13294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-tpos 6248  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-mulr 12552  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-cmn 13095  df-abl 13096  df-mgp 13136  df-ur 13148  df-srg 13152  df-ring 13186  df-oppr 13245  df-dvdsr 13263  df-unit 13264  df-invr 13295
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator