Proof of Theorem invrpropdg
Step | Hyp | Ref
| Expression |
1 | | eqidd 2178 |
. . . 4
⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐾)) |
2 | | eqidd 2178 |
. . . 4
⊢ (𝜑 → ((mulGrp‘𝐾) ↾s
(Unit‘𝐾)) =
((mulGrp‘𝐾)
↾s (Unit‘𝐾))) |
3 | | unitpropdg.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ Ring) |
4 | | ringsrg 13229 |
. . . . 5
⊢ (𝐾 ∈ Ring → 𝐾 ∈ SRing) |
5 | 3, 4 | syl 14 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ SRing) |
6 | 1, 2, 5 | unitgrpbasd 13289 |
. . 3
⊢ (𝜑 → (Unit‘𝐾) =
(Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))) |
7 | | unitpropdg.1 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
8 | | unitpropdg.2 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
9 | | unitpropdg.3 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
10 | | unitpropdg.l |
. . . . 5
⊢ (𝜑 → 𝐿 ∈ Ring) |
11 | 7, 8, 9, 3, 10 | unitpropdg 13322 |
. . . 4
⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) |
12 | | eqidd 2178 |
. . . . 5
⊢ (𝜑 → (Unit‘𝐿) = (Unit‘𝐿)) |
13 | | eqidd 2178 |
. . . . 5
⊢ (𝜑 → ((mulGrp‘𝐿) ↾s
(Unit‘𝐿)) =
((mulGrp‘𝐿)
↾s (Unit‘𝐿))) |
14 | | ringsrg 13229 |
. . . . . 6
⊢ (𝐿 ∈ Ring → 𝐿 ∈ SRing) |
15 | 10, 14 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝐿 ∈ SRing) |
16 | 12, 13, 15 | unitgrpbasd 13289 |
. . . 4
⊢ (𝜑 → (Unit‘𝐿) =
(Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) |
17 | 11, 16 | eqtrd 2210 |
. . 3
⊢ (𝜑 → (Unit‘𝐾) =
(Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) |
18 | | eqid 2177 |
. . . . . 6
⊢
(mulGrp‘𝐾) =
(mulGrp‘𝐾) |
19 | 18 | ringmgp 13190 |
. . . . 5
⊢ (𝐾 ∈ Ring →
(mulGrp‘𝐾) ∈
Mnd) |
20 | 3, 19 | syl 14 |
. . . 4
⊢ (𝜑 → (mulGrp‘𝐾) ∈ Mnd) |
21 | | basfn 12522 |
. . . . . . 7
⊢ Base Fn
V |
22 | 3 | elexd 2752 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ V) |
23 | | funfvex 5534 |
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝐾 ∈ dom
Base) → (Base‘𝐾)
∈ V) |
24 | 23 | funfni 5318 |
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝐾 ∈ V) →
(Base‘𝐾) ∈
V) |
25 | 21, 22, 24 | sylancr 414 |
. . . . . 6
⊢ (𝜑 → (Base‘𝐾) ∈ V) |
26 | 7, 25 | eqeltrd 2254 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ V) |
27 | 7, 1, 5 | unitssd 13283 |
. . . . 5
⊢ (𝜑 → (Unit‘𝐾) ⊆ 𝐵) |
28 | 26, 27 | ssexd 4145 |
. . . 4
⊢ (𝜑 → (Unit‘𝐾) ∈ V) |
29 | | ressex 12527 |
. . . 4
⊢
(((mulGrp‘𝐾)
∈ Mnd ∧ (Unit‘𝐾) ∈ V) → ((mulGrp‘𝐾) ↾s
(Unit‘𝐾)) ∈
V) |
30 | 20, 28, 29 | syl2anc 411 |
. . 3
⊢ (𝜑 → ((mulGrp‘𝐾) ↾s
(Unit‘𝐾)) ∈
V) |
31 | | eqid 2177 |
. . . . . 6
⊢
(mulGrp‘𝐿) =
(mulGrp‘𝐿) |
32 | 31 | ringmgp 13190 |
. . . . 5
⊢ (𝐿 ∈ Ring →
(mulGrp‘𝐿) ∈
Mnd) |
33 | 10, 32 | syl 14 |
. . . 4
⊢ (𝜑 → (mulGrp‘𝐿) ∈ Mnd) |
34 | 11, 28 | eqeltrrd 2255 |
. . . 4
⊢ (𝜑 → (Unit‘𝐿) ∈ V) |
35 | | ressex 12527 |
. . . 4
⊢
(((mulGrp‘𝐿)
∈ Mnd ∧ (Unit‘𝐿) ∈ V) → ((mulGrp‘𝐿) ↾s
(Unit‘𝐿)) ∈
V) |
36 | 33, 34, 35 | syl2anc 411 |
. . 3
⊢ (𝜑 → ((mulGrp‘𝐿) ↾s
(Unit‘𝐿)) ∈
V) |
37 | 27 | sselda 3157 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Unit‘𝐾)) → 𝑥 ∈ 𝐵) |
38 | 27 | sselda 3157 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (Unit‘𝐾)) → 𝑦 ∈ 𝐵) |
39 | 37, 38 | anim12dan 600 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
40 | 39, 9 | syldan 282 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
41 | | eqid 2177 |
. . . . . . . 8
⊢
(.r‘𝐾) = (.r‘𝐾) |
42 | 18, 41 | mgpplusgg 13139 |
. . . . . . 7
⊢ (𝐾 ∈ Ring →
(.r‘𝐾) =
(+g‘(mulGrp‘𝐾))) |
43 | 3, 42 | syl 14 |
. . . . . 6
⊢ (𝜑 → (.r‘𝐾) =
(+g‘(mulGrp‘𝐾))) |
44 | 2, 43, 28, 20 | ressplusgd 12589 |
. . . . 5
⊢ (𝜑 → (.r‘𝐾) =
(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))) |
45 | 44 | oveqdr 5905 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘((mulGrp‘𝐾) ↾s
(Unit‘𝐾)))𝑦)) |
46 | | eqid 2177 |
. . . . . . . 8
⊢
(.r‘𝐿) = (.r‘𝐿) |
47 | 31, 46 | mgpplusgg 13139 |
. . . . . . 7
⊢ (𝐿 ∈ Ring →
(.r‘𝐿) =
(+g‘(mulGrp‘𝐿))) |
48 | 10, 47 | syl 14 |
. . . . . 6
⊢ (𝜑 → (.r‘𝐿) =
(+g‘(mulGrp‘𝐿))) |
49 | 13, 48, 34, 33 | ressplusgd 12589 |
. . . . 5
⊢ (𝜑 → (.r‘𝐿) =
(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) |
50 | 49 | oveqdr 5905 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s
(Unit‘𝐿)))𝑦)) |
51 | 40, 45, 50 | 3eqtr3d 2218 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(+g‘((mulGrp‘𝐾) ↾s
(Unit‘𝐾)))𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s
(Unit‘𝐿)))𝑦)) |
52 | 6, 17, 30, 36, 51 | grpinvpropdg 12950 |
. 2
⊢ (𝜑 →
(invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) =
(invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) |
53 | | eqidd 2178 |
. . 3
⊢ (𝜑 →
(invr‘𝐾) =
(invr‘𝐾)) |
54 | 1, 2, 53, 3 | invrfvald 13296 |
. 2
⊢ (𝜑 →
(invr‘𝐾) =
(invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))) |
55 | | eqidd 2178 |
. . 3
⊢ (𝜑 →
(invr‘𝐿) =
(invr‘𝐿)) |
56 | 12, 13, 55, 10 | invrfvald 13296 |
. 2
⊢ (𝜑 →
(invr‘𝐿) =
(invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))) |
57 | 52, 54, 56 | 3eqtr4d 2220 |
1
⊢ (𝜑 →
(invr‘𝐾) =
(invr‘𝐿)) |