ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invrpropdg GIF version

Theorem invrpropdg 13705
Description: The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
unitpropdg.1 (𝜑𝐵 = (Base‘𝐾))
unitpropdg.2 (𝜑𝐵 = (Base‘𝐿))
unitpropdg.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
unitpropdg.k (𝜑𝐾 ∈ Ring)
unitpropdg.l (𝜑𝐿 ∈ Ring)
Assertion
Ref Expression
invrpropdg (𝜑 → (invr𝐾) = (invr𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem invrpropdg
StepHypRef Expression
1 eqidd 2197 . . . 4 (𝜑 → (Unit‘𝐾) = (Unit‘𝐾))
2 eqidd 2197 . . . 4 (𝜑 → ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) = ((mulGrp‘𝐾) ↾s (Unit‘𝐾)))
3 unitpropdg.k . . . . 5 (𝜑𝐾 ∈ Ring)
4 ringsrg 13603 . . . . 5 (𝐾 ∈ Ring → 𝐾 ∈ SRing)
53, 4syl 14 . . . 4 (𝜑𝐾 ∈ SRing)
61, 2, 5unitgrpbasd 13671 . . 3 (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))
7 unitpropdg.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
8 unitpropdg.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
9 unitpropdg.3 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
10 unitpropdg.l . . . . 5 (𝜑𝐿 ∈ Ring)
117, 8, 9, 3, 10unitpropdg 13704 . . . 4 (𝜑 → (Unit‘𝐾) = (Unit‘𝐿))
12 eqidd 2197 . . . . 5 (𝜑 → (Unit‘𝐿) = (Unit‘𝐿))
13 eqidd 2197 . . . . 5 (𝜑 → ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) = ((mulGrp‘𝐿) ↾s (Unit‘𝐿)))
14 ringsrg 13603 . . . . . 6 (𝐿 ∈ Ring → 𝐿 ∈ SRing)
1510, 14syl 14 . . . . 5 (𝜑𝐿 ∈ SRing)
1612, 13, 15unitgrpbasd 13671 . . . 4 (𝜑 → (Unit‘𝐿) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
1711, 16eqtrd 2229 . . 3 (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
18 eqid 2196 . . . . . 6 (mulGrp‘𝐾) = (mulGrp‘𝐾)
1918ringmgp 13558 . . . . 5 (𝐾 ∈ Ring → (mulGrp‘𝐾) ∈ Mnd)
203, 19syl 14 . . . 4 (𝜑 → (mulGrp‘𝐾) ∈ Mnd)
21 basfn 12736 . . . . . . 7 Base Fn V
223elexd 2776 . . . . . . 7 (𝜑𝐾 ∈ V)
23 funfvex 5575 . . . . . . . 8 ((Fun Base ∧ 𝐾 ∈ dom Base) → (Base‘𝐾) ∈ V)
2423funfni 5358 . . . . . . 7 ((Base Fn V ∧ 𝐾 ∈ V) → (Base‘𝐾) ∈ V)
2521, 22, 24sylancr 414 . . . . . 6 (𝜑 → (Base‘𝐾) ∈ V)
267, 25eqeltrd 2273 . . . . 5 (𝜑𝐵 ∈ V)
277, 1, 5unitssd 13665 . . . . 5 (𝜑 → (Unit‘𝐾) ⊆ 𝐵)
2826, 27ssexd 4173 . . . 4 (𝜑 → (Unit‘𝐾) ∈ V)
29 ressex 12743 . . . 4 (((mulGrp‘𝐾) ∈ Mnd ∧ (Unit‘𝐾) ∈ V) → ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) ∈ V)
3020, 28, 29syl2anc 411 . . 3 (𝜑 → ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) ∈ V)
31 eqid 2196 . . . . . 6 (mulGrp‘𝐿) = (mulGrp‘𝐿)
3231ringmgp 13558 . . . . 5 (𝐿 ∈ Ring → (mulGrp‘𝐿) ∈ Mnd)
3310, 32syl 14 . . . 4 (𝜑 → (mulGrp‘𝐿) ∈ Mnd)
3411, 28eqeltrrd 2274 . . . 4 (𝜑 → (Unit‘𝐿) ∈ V)
35 ressex 12743 . . . 4 (((mulGrp‘𝐿) ∈ Mnd ∧ (Unit‘𝐿) ∈ V) → ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) ∈ V)
3633, 34, 35syl2anc 411 . . 3 (𝜑 → ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) ∈ V)
3727sselda 3183 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘𝐾)) → 𝑥𝐵)
3827sselda 3183 . . . . . 6 ((𝜑𝑦 ∈ (Unit‘𝐾)) → 𝑦𝐵)
3937, 38anim12dan 600 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥𝐵𝑦𝐵))
4039, 9syldan 282 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
41 eqid 2196 . . . . . . . 8 (.r𝐾) = (.r𝐾)
4218, 41mgpplusgg 13480 . . . . . . 7 (𝐾 ∈ Ring → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
433, 42syl 14 . . . . . 6 (𝜑 → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
442, 43, 28, 20ressplusgd 12806 . . . . 5 (𝜑 → (.r𝐾) = (+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))
4544oveqdr 5950 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r𝐾)𝑦) = (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦))
46 eqid 2196 . . . . . . . 8 (.r𝐿) = (.r𝐿)
4731, 46mgpplusgg 13480 . . . . . . 7 (𝐿 ∈ Ring → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
4810, 47syl 14 . . . . . 6 (𝜑 → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
4913, 48, 34, 33ressplusgd 12806 . . . . 5 (𝜑 → (.r𝐿) = (+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
5049oveqdr 5950 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r𝐿)𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦))
5140, 45, 503eqtr3d 2237 . . 3 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦))
526, 17, 30, 36, 51grpinvpropdg 13207 . 2 (𝜑 → (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
53 eqidd 2197 . . 3 (𝜑 → (invr𝐾) = (invr𝐾))
541, 2, 53, 3invrfvald 13678 . 2 (𝜑 → (invr𝐾) = (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))
55 eqidd 2197 . . 3 (𝜑 → (invr𝐿) = (invr𝐿))
5612, 13, 55, 10invrfvald 13678 . 2 (𝜑 → (invr𝐿) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
5752, 54, 563eqtr4d 2239 1 (𝜑 → (invr𝐾) = (invr𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763   Fn wfn 5253  cfv 5258  (class class class)co 5922  Basecbs 12678  s cress 12679  +gcplusg 12755  .rcmulr 12756  Mndcmnd 13057  invgcminusg 13133  mulGrpcmgp 13476  SRingcsrg 13519  Ringcrg 13552  Unitcui 13643  invrcinvr 13676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-tpos 6303  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-cmn 13416  df-abl 13417  df-mgp 13477  df-ur 13516  df-srg 13520  df-ring 13554  df-oppr 13624  df-dvdsr 13645  df-unit 13646  df-invr 13677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator