ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invrpropdg GIF version

Theorem invrpropdg 14107
Description: The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
unitpropdg.1 (𝜑𝐵 = (Base‘𝐾))
unitpropdg.2 (𝜑𝐵 = (Base‘𝐿))
unitpropdg.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
unitpropdg.k (𝜑𝐾 ∈ Ring)
unitpropdg.l (𝜑𝐿 ∈ Ring)
Assertion
Ref Expression
invrpropdg (𝜑 → (invr𝐾) = (invr𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem invrpropdg
StepHypRef Expression
1 eqidd 2230 . . . 4 (𝜑 → (Unit‘𝐾) = (Unit‘𝐾))
2 eqidd 2230 . . . 4 (𝜑 → ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) = ((mulGrp‘𝐾) ↾s (Unit‘𝐾)))
3 unitpropdg.k . . . . 5 (𝜑𝐾 ∈ Ring)
4 ringsrg 14005 . . . . 5 (𝐾 ∈ Ring → 𝐾 ∈ SRing)
53, 4syl 14 . . . 4 (𝜑𝐾 ∈ SRing)
61, 2, 5unitgrpbasd 14073 . . 3 (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))
7 unitpropdg.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
8 unitpropdg.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
9 unitpropdg.3 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
10 unitpropdg.l . . . . 5 (𝜑𝐿 ∈ Ring)
117, 8, 9, 3, 10unitpropdg 14106 . . . 4 (𝜑 → (Unit‘𝐾) = (Unit‘𝐿))
12 eqidd 2230 . . . . 5 (𝜑 → (Unit‘𝐿) = (Unit‘𝐿))
13 eqidd 2230 . . . . 5 (𝜑 → ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) = ((mulGrp‘𝐿) ↾s (Unit‘𝐿)))
14 ringsrg 14005 . . . . . 6 (𝐿 ∈ Ring → 𝐿 ∈ SRing)
1510, 14syl 14 . . . . 5 (𝜑𝐿 ∈ SRing)
1612, 13, 15unitgrpbasd 14073 . . . 4 (𝜑 → (Unit‘𝐿) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
1711, 16eqtrd 2262 . . 3 (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
18 eqid 2229 . . . . . 6 (mulGrp‘𝐾) = (mulGrp‘𝐾)
1918ringmgp 13960 . . . . 5 (𝐾 ∈ Ring → (mulGrp‘𝐾) ∈ Mnd)
203, 19syl 14 . . . 4 (𝜑 → (mulGrp‘𝐾) ∈ Mnd)
21 basfn 13086 . . . . . . 7 Base Fn V
223elexd 2813 . . . . . . 7 (𝜑𝐾 ∈ V)
23 funfvex 5643 . . . . . . . 8 ((Fun Base ∧ 𝐾 ∈ dom Base) → (Base‘𝐾) ∈ V)
2423funfni 5422 . . . . . . 7 ((Base Fn V ∧ 𝐾 ∈ V) → (Base‘𝐾) ∈ V)
2521, 22, 24sylancr 414 . . . . . 6 (𝜑 → (Base‘𝐾) ∈ V)
267, 25eqeltrd 2306 . . . . 5 (𝜑𝐵 ∈ V)
277, 1, 5unitssd 14067 . . . . 5 (𝜑 → (Unit‘𝐾) ⊆ 𝐵)
2826, 27ssexd 4223 . . . 4 (𝜑 → (Unit‘𝐾) ∈ V)
29 ressex 13093 . . . 4 (((mulGrp‘𝐾) ∈ Mnd ∧ (Unit‘𝐾) ∈ V) → ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) ∈ V)
3020, 28, 29syl2anc 411 . . 3 (𝜑 → ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) ∈ V)
31 eqid 2229 . . . . . 6 (mulGrp‘𝐿) = (mulGrp‘𝐿)
3231ringmgp 13960 . . . . 5 (𝐿 ∈ Ring → (mulGrp‘𝐿) ∈ Mnd)
3310, 32syl 14 . . . 4 (𝜑 → (mulGrp‘𝐿) ∈ Mnd)
3411, 28eqeltrrd 2307 . . . 4 (𝜑 → (Unit‘𝐿) ∈ V)
35 ressex 13093 . . . 4 (((mulGrp‘𝐿) ∈ Mnd ∧ (Unit‘𝐿) ∈ V) → ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) ∈ V)
3633, 34, 35syl2anc 411 . . 3 (𝜑 → ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) ∈ V)
3727sselda 3224 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘𝐾)) → 𝑥𝐵)
3827sselda 3224 . . . . . 6 ((𝜑𝑦 ∈ (Unit‘𝐾)) → 𝑦𝐵)
3937, 38anim12dan 602 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥𝐵𝑦𝐵))
4039, 9syldan 282 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
41 eqid 2229 . . . . . . . 8 (.r𝐾) = (.r𝐾)
4218, 41mgpplusgg 13882 . . . . . . 7 (𝐾 ∈ Ring → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
433, 42syl 14 . . . . . 6 (𝜑 → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
442, 43, 28, 20ressplusgd 13157 . . . . 5 (𝜑 → (.r𝐾) = (+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))
4544oveqdr 6028 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r𝐾)𝑦) = (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦))
46 eqid 2229 . . . . . . . 8 (.r𝐿) = (.r𝐿)
4731, 46mgpplusgg 13882 . . . . . . 7 (𝐿 ∈ Ring → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
4810, 47syl 14 . . . . . 6 (𝜑 → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
4913, 48, 34, 33ressplusgd 13157 . . . . 5 (𝜑 → (.r𝐿) = (+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
5049oveqdr 6028 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r𝐿)𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦))
5140, 45, 503eqtr3d 2270 . . 3 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦))
526, 17, 30, 36, 51grpinvpropdg 13603 . 2 (𝜑 → (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
53 eqidd 2230 . . 3 (𝜑 → (invr𝐾) = (invr𝐾))
541, 2, 53, 3invrfvald 14080 . 2 (𝜑 → (invr𝐾) = (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))
55 eqidd 2230 . . 3 (𝜑 → (invr𝐿) = (invr𝐿))
5612, 13, 55, 10invrfvald 14080 . 2 (𝜑 → (invr𝐿) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
5752, 54, 563eqtr4d 2272 1 (𝜑 → (invr𝐾) = (invr𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799   Fn wfn 5312  cfv 5317  (class class class)co 6000  Basecbs 13027  s cress 13028  +gcplusg 13105  .rcmulr 13106  Mndcmnd 13444  invgcminusg 13529  mulGrpcmgp 13878  SRingcsrg 13921  Ringcrg 13954  Unitcui 14045  invrcinvr 14078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-tpos 6389  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-cmn 13818  df-abl 13819  df-mgp 13879  df-ur 13918  df-srg 13922  df-ring 13956  df-oppr 14026  df-dvdsr 14047  df-unit 14048  df-invr 14079
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator