ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invrpropdg GIF version

Theorem invrpropdg 13996
Description: The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
unitpropdg.1 (𝜑𝐵 = (Base‘𝐾))
unitpropdg.2 (𝜑𝐵 = (Base‘𝐿))
unitpropdg.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
unitpropdg.k (𝜑𝐾 ∈ Ring)
unitpropdg.l (𝜑𝐿 ∈ Ring)
Assertion
Ref Expression
invrpropdg (𝜑 → (invr𝐾) = (invr𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem invrpropdg
StepHypRef Expression
1 eqidd 2207 . . . 4 (𝜑 → (Unit‘𝐾) = (Unit‘𝐾))
2 eqidd 2207 . . . 4 (𝜑 → ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) = ((mulGrp‘𝐾) ↾s (Unit‘𝐾)))
3 unitpropdg.k . . . . 5 (𝜑𝐾 ∈ Ring)
4 ringsrg 13894 . . . . 5 (𝐾 ∈ Ring → 𝐾 ∈ SRing)
53, 4syl 14 . . . 4 (𝜑𝐾 ∈ SRing)
61, 2, 5unitgrpbasd 13962 . . 3 (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))
7 unitpropdg.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
8 unitpropdg.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
9 unitpropdg.3 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
10 unitpropdg.l . . . . 5 (𝜑𝐿 ∈ Ring)
117, 8, 9, 3, 10unitpropdg 13995 . . . 4 (𝜑 → (Unit‘𝐾) = (Unit‘𝐿))
12 eqidd 2207 . . . . 5 (𝜑 → (Unit‘𝐿) = (Unit‘𝐿))
13 eqidd 2207 . . . . 5 (𝜑 → ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) = ((mulGrp‘𝐿) ↾s (Unit‘𝐿)))
14 ringsrg 13894 . . . . . 6 (𝐿 ∈ Ring → 𝐿 ∈ SRing)
1510, 14syl 14 . . . . 5 (𝜑𝐿 ∈ SRing)
1612, 13, 15unitgrpbasd 13962 . . . 4 (𝜑 → (Unit‘𝐿) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
1711, 16eqtrd 2239 . . 3 (𝜑 → (Unit‘𝐾) = (Base‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
18 eqid 2206 . . . . . 6 (mulGrp‘𝐾) = (mulGrp‘𝐾)
1918ringmgp 13849 . . . . 5 (𝐾 ∈ Ring → (mulGrp‘𝐾) ∈ Mnd)
203, 19syl 14 . . . 4 (𝜑 → (mulGrp‘𝐾) ∈ Mnd)
21 basfn 12975 . . . . . . 7 Base Fn V
223elexd 2787 . . . . . . 7 (𝜑𝐾 ∈ V)
23 funfvex 5611 . . . . . . . 8 ((Fun Base ∧ 𝐾 ∈ dom Base) → (Base‘𝐾) ∈ V)
2423funfni 5390 . . . . . . 7 ((Base Fn V ∧ 𝐾 ∈ V) → (Base‘𝐾) ∈ V)
2521, 22, 24sylancr 414 . . . . . 6 (𝜑 → (Base‘𝐾) ∈ V)
267, 25eqeltrd 2283 . . . . 5 (𝜑𝐵 ∈ V)
277, 1, 5unitssd 13956 . . . . 5 (𝜑 → (Unit‘𝐾) ⊆ 𝐵)
2826, 27ssexd 4195 . . . 4 (𝜑 → (Unit‘𝐾) ∈ V)
29 ressex 12982 . . . 4 (((mulGrp‘𝐾) ∈ Mnd ∧ (Unit‘𝐾) ∈ V) → ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) ∈ V)
3020, 28, 29syl2anc 411 . . 3 (𝜑 → ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) ∈ V)
31 eqid 2206 . . . . . 6 (mulGrp‘𝐿) = (mulGrp‘𝐿)
3231ringmgp 13849 . . . . 5 (𝐿 ∈ Ring → (mulGrp‘𝐿) ∈ Mnd)
3310, 32syl 14 . . . 4 (𝜑 → (mulGrp‘𝐿) ∈ Mnd)
3411, 28eqeltrrd 2284 . . . 4 (𝜑 → (Unit‘𝐿) ∈ V)
35 ressex 12982 . . . 4 (((mulGrp‘𝐿) ∈ Mnd ∧ (Unit‘𝐿) ∈ V) → ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) ∈ V)
3633, 34, 35syl2anc 411 . . 3 (𝜑 → ((mulGrp‘𝐿) ↾s (Unit‘𝐿)) ∈ V)
3727sselda 3197 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘𝐾)) → 𝑥𝐵)
3827sselda 3197 . . . . . 6 ((𝜑𝑦 ∈ (Unit‘𝐾)) → 𝑦𝐵)
3937, 38anim12dan 600 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥𝐵𝑦𝐵))
4039, 9syldan 282 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
41 eqid 2206 . . . . . . . 8 (.r𝐾) = (.r𝐾)
4218, 41mgpplusgg 13771 . . . . . . 7 (𝐾 ∈ Ring → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
433, 42syl 14 . . . . . 6 (𝜑 → (.r𝐾) = (+g‘(mulGrp‘𝐾)))
442, 43, 28, 20ressplusgd 13046 . . . . 5 (𝜑 → (.r𝐾) = (+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))
4544oveqdr 5990 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r𝐾)𝑦) = (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦))
46 eqid 2206 . . . . . . . 8 (.r𝐿) = (.r𝐿)
4731, 46mgpplusgg 13771 . . . . . . 7 (𝐿 ∈ Ring → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
4810, 47syl 14 . . . . . 6 (𝜑 → (.r𝐿) = (+g‘(mulGrp‘𝐿)))
4913, 48, 34, 33ressplusgd 13046 . . . . 5 (𝜑 → (.r𝐿) = (+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
5049oveqdr 5990 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(.r𝐿)𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦))
5140, 45, 503eqtr3d 2247 . . 3 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝐾) ∧ 𝑦 ∈ (Unit‘𝐾))) → (𝑥(+g‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))𝑦) = (𝑥(+g‘((mulGrp‘𝐿) ↾s (Unit‘𝐿)))𝑦))
526, 17, 30, 36, 51grpinvpropdg 13492 . 2 (𝜑 → (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
53 eqidd 2207 . . 3 (𝜑 → (invr𝐾) = (invr𝐾))
541, 2, 53, 3invrfvald 13969 . 2 (𝜑 → (invr𝐾) = (invg‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))
55 eqidd 2207 . . 3 (𝜑 → (invr𝐿) = (invr𝐿))
5612, 13, 55, 10invrfvald 13969 . 2 (𝜑 → (invr𝐿) = (invg‘((mulGrp‘𝐿) ↾s (Unit‘𝐿))))
5752, 54, 563eqtr4d 2249 1 (𝜑 → (invr𝐾) = (invr𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773   Fn wfn 5280  cfv 5285  (class class class)co 5962  Basecbs 12917  s cress 12918  +gcplusg 12994  .rcmulr 12995  Mndcmnd 13333  invgcminusg 13418  mulGrpcmgp 13767  SRingcsrg 13810  Ringcrg 13843  Unitcui 13934  invrcinvr 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-pre-ltirr 8067  ax-pre-lttrn 8069  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-tpos 6349  df-pnf 8139  df-mnf 8140  df-ltxr 8142  df-inn 9067  df-2 9125  df-3 9126  df-ndx 12920  df-slot 12921  df-base 12923  df-sets 12924  df-iress 12925  df-plusg 13007  df-mulr 13008  df-0g 13175  df-mgm 13273  df-sgrp 13319  df-mnd 13334  df-grp 13420  df-minusg 13421  df-cmn 13707  df-abl 13708  df-mgp 13768  df-ur 13807  df-srg 13811  df-ring 13845  df-oppr 13915  df-dvdsr 13936  df-unit 13937  df-invr 13968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator