ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pc11 GIF version

Theorem pc11 12739
Description: The prime count function, viewed as a function from to (ℕ ↑𝑚 ℙ), is one-to-one. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pc11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝

Proof of Theorem pc11
StepHypRef Expression
1 oveq2 5970 . . 3 (𝐴 = 𝐵 → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))
21ralrimivw 2581 . 2 (𝐴 = 𝐵 → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))
3 nn0z 9422 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
4 nn0z 9422 . . . 4 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
5 zq 9777 . . . . . . . . . . 11 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
6 pcxcl 12719 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑝 pCnt 𝐴) ∈ ℝ*)
75, 6sylan2 286 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑝 pCnt 𝐴) ∈ ℝ*)
8 zq 9777 . . . . . . . . . . 11 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
9 pcxcl 12719 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑝 pCnt 𝐵) ∈ ℝ*)
108, 9sylan2 286 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℤ) → (𝑝 pCnt 𝐵) ∈ ℝ*)
117, 10anim12dan 600 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝑝 pCnt 𝐴) ∈ ℝ* ∧ (𝑝 pCnt 𝐵) ∈ ℝ*))
12 xrletri3 9956 . . . . . . . . 9 (((𝑝 pCnt 𝐴) ∈ ℝ* ∧ (𝑝 pCnt 𝐵) ∈ ℝ*) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))))
1311, 12syl 14 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))))
1413ancoms 268 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))))
1514ralbidva 2503 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ∀𝑝 ∈ ℙ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))))
16 r19.26 2633 . . . . . 6 (∀𝑝 ∈ ℙ ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)))
1715, 16bitrdi 196 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))))
18 pc2dvds 12738 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵)))
19 pc2dvds 12738 . . . . . . 7 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵𝐴 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)))
2019ancoms 268 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴)))
2118, 20anbi12d 473 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝐵𝐵𝐴) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵) ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ (𝑝 pCnt 𝐴))))
2217, 21bitr4d 191 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ (𝐴𝐵𝐵𝐴)))
233, 4, 22syl2an 289 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ (𝐴𝐵𝐵𝐴)))
24 dvdseq 12244 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐴𝐵𝐵𝐴)) → 𝐴 = 𝐵)
2524ex 115 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵))
2623, 25sylbid 150 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) → 𝐴 = 𝐵))
272, 26impbid2 143 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wral 2485   class class class wbr 4054  (class class class)co 5962  *cxr 8136  cle 8138  0cn0 9325  cz 9402  cq 9770  cdvds 12183  cprime 12514   pCnt cpc 12692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074  ax-caucvg 8075
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-isom 5294  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-1o 6520  df-2o 6521  df-er 6638  df-en 6846  df-sup 7107  df-inf 7108  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-n0 9326  df-xnn0 9389  df-z 9403  df-uz 9679  df-q 9771  df-rp 9806  df-fz 10161  df-fzo 10295  df-fl 10445  df-mod 10500  df-seqfrec 10625  df-exp 10716  df-cj 11238  df-re 11239  df-im 11240  df-rsqrt 11394  df-abs 11395  df-dvds 12184  df-gcd 12360  df-prm 12515  df-pc 12693
This theorem is referenced by:  pcprod  12754  1arith  12775
  Copyright terms: Public domain W3C validator