| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlem3a | GIF version | ||
| Description: Lemma for transfinite recursion. Let 𝐴 be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by NM, 9-Apr-1995.) |
| Ref | Expression |
|---|---|
| tfrlem3.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| tfrlem3.2 | ⊢ 𝐺 ∈ V |
| Ref | Expression |
|---|---|
| tfrlem3a | ⊢ (𝐺 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem3.2 | . 2 ⊢ 𝐺 ∈ V | |
| 2 | fneq12 5361 | . . . 4 ⊢ ((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) → (𝑓 Fn 𝑥 ↔ 𝐺 Fn 𝑧)) | |
| 3 | simpll 527 | . . . . . . 7 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑓 = 𝐺) | |
| 4 | simpr 110 | . . . . . . 7 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤) | |
| 5 | 3, 4 | fveq12d 5577 | . . . . . 6 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓‘𝑦) = (𝐺‘𝑤)) |
| 6 | 3, 4 | reseq12d 4957 | . . . . . . 7 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓 ↾ 𝑦) = (𝐺 ↾ 𝑤)) |
| 7 | 6 | fveq2d 5574 | . . . . . 6 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝐹‘(𝑓 ↾ 𝑦)) = (𝐹‘(𝐺 ↾ 𝑤))) |
| 8 | 5, 7 | eqeq12d 2219 | . . . . 5 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → ((𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) ↔ (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤)))) |
| 9 | simpr 110 | . . . . . 6 ⊢ ((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) | |
| 10 | 9 | adantr 276 | . . . . 5 ⊢ (((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧) |
| 11 | 8, 10 | cbvraldva2 2744 | . . . 4 ⊢ ((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)) ↔ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤)))) |
| 12 | 2, 11 | anbi12d 473 | . . 3 ⊢ ((𝑓 = 𝐺 ∧ 𝑥 = 𝑧) → ((𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) ↔ (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤))))) |
| 13 | 12 | cbvrexdva 2747 | . 2 ⊢ (𝑓 = 𝐺 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤))))) |
| 14 | tfrlem3.1 | . 2 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
| 15 | 1, 13, 14 | elab2 2920 | 1 ⊢ (𝐺 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤)))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 {cab 2190 ∀wral 2483 ∃wrex 2484 Vcvv 2771 Oncon0 4408 ↾ cres 4675 Fn wfn 5263 ‘cfv 5268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-res 4685 df-iota 5229 df-fun 5270 df-fn 5271 df-fv 5276 |
| This theorem is referenced by: tfrlem3 6387 tfrlem5 6390 tfrlemisucaccv 6401 tfrlemibxssdm 6403 tfrlemi14d 6409 tfrexlem 6410 |
| Copyright terms: Public domain | W3C validator |