ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlem3ag GIF version

Theorem tfr1onlem3ag 6234
Description: Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3ag 6206 but for tfr1on 6247 related lemmas). (Contributed by Jim Kingdon, 13-Mar-2022.)
Hypothesis
Ref Expression
tfr1onlem3ag.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
Assertion
Ref Expression
tfr1onlem3ag (𝐻𝑉 → (𝐻𝐴 ↔ ∃𝑧𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤)))))
Distinct variable groups:   𝑓,𝐺,𝑤,𝑥,𝑦,𝑧   𝑓,𝐻,𝑤,𝑥,𝑦,𝑧   𝑓,𝑋,𝑥,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑓)   𝑉(𝑥,𝑦,𝑧,𝑤,𝑓)   𝑋(𝑦,𝑤)

Proof of Theorem tfr1onlem3ag
StepHypRef Expression
1 fneq12 5216 . . . 4 ((𝑓 = 𝐻𝑥 = 𝑧) → (𝑓 Fn 𝑥𝐻 Fn 𝑧))
2 simpll 518 . . . . . . 7 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑓 = 𝐻)
3 simpr 109 . . . . . . 7 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
42, 3fveq12d 5428 . . . . . 6 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓𝑦) = (𝐻𝑤))
52, 3reseq12d 4820 . . . . . . 7 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓𝑦) = (𝐻𝑤))
65fveq2d 5425 . . . . . 6 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝐺‘(𝑓𝑦)) = (𝐺‘(𝐻𝑤)))
74, 6eqeq12d 2154 . . . . 5 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ (𝐻𝑤) = (𝐺‘(𝐻𝑤))))
8 simplr 519 . . . . 5 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧)
97, 8cbvraldva2 2661 . . . 4 ((𝑓 = 𝐻𝑥 = 𝑧) → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤))))
101, 9anbi12d 464 . . 3 ((𝑓 = 𝐻𝑥 = 𝑧) → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ (𝐻 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤)))))
1110cbvrexdva 2664 . 2 (𝑓 = 𝐻 → (∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑧𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤)))))
12 tfr1onlem3ag.1 . 2 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
1311, 12elab2g 2831 1 (𝐻𝑉 → (𝐻𝐴 ↔ ∃𝑧𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  {cab 2125  wral 2416  wrex 2417  cres 4541   Fn wfn 5118  cfv 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-res 4551  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131
This theorem is referenced by:  tfr1onlem3  6235  tfr1onlemsucaccv  6238  tfr1onlembxssdm  6240  tfr1onlemres  6246
  Copyright terms: Public domain W3C validator