ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlem3ag GIF version

Theorem tfr1onlem3ag 6362
Description: Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3ag 6334 but for tfr1on 6375 related lemmas). (Contributed by Jim Kingdon, 13-Mar-2022.)
Hypothesis
Ref Expression
tfr1onlem3ag.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
Assertion
Ref Expression
tfr1onlem3ag (𝐻𝑉 → (𝐻𝐴 ↔ ∃𝑧𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤)))))
Distinct variable groups:   𝑓,𝐺,𝑤,𝑥,𝑦,𝑧   𝑓,𝐻,𝑤,𝑥,𝑦,𝑧   𝑓,𝑋,𝑥,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑓)   𝑉(𝑥,𝑦,𝑧,𝑤,𝑓)   𝑋(𝑦,𝑤)

Proof of Theorem tfr1onlem3ag
StepHypRef Expression
1 fneq12 5328 . . . 4 ((𝑓 = 𝐻𝑥 = 𝑧) → (𝑓 Fn 𝑥𝐻 Fn 𝑧))
2 simpll 527 . . . . . . 7 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑓 = 𝐻)
3 simpr 110 . . . . . . 7 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
42, 3fveq12d 5541 . . . . . 6 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓𝑦) = (𝐻𝑤))
52, 3reseq12d 4926 . . . . . . 7 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓𝑦) = (𝐻𝑤))
65fveq2d 5538 . . . . . 6 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝐺‘(𝑓𝑦)) = (𝐺‘(𝐻𝑤)))
74, 6eqeq12d 2204 . . . . 5 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ (𝐻𝑤) = (𝐺‘(𝐻𝑤))))
8 simplr 528 . . . . 5 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧)
97, 8cbvraldva2 2725 . . . 4 ((𝑓 = 𝐻𝑥 = 𝑧) → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤))))
101, 9anbi12d 473 . . 3 ((𝑓 = 𝐻𝑥 = 𝑧) → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ (𝐻 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤)))))
1110cbvrexdva 2728 . 2 (𝑓 = 𝐻 → (∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑧𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤)))))
12 tfr1onlem3ag.1 . 2 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
1311, 12elab2g 2899 1 (𝐻𝑉 → (𝐻𝐴 ↔ ∃𝑧𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  {cab 2175  wral 2468  wrex 2469  cres 4646   Fn wfn 5230  cfv 5235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-res 4656  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243
This theorem is referenced by:  tfr1onlem3  6363  tfr1onlemsucaccv  6366  tfr1onlembxssdm  6368  tfr1onlemres  6374
  Copyright terms: Public domain W3C validator