ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlem3ag GIF version

Theorem tfr1onlem3ag 6446
Description: Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3ag 6418 but for tfr1on 6459 related lemmas). (Contributed by Jim Kingdon, 13-Mar-2022.)
Hypothesis
Ref Expression
tfr1onlem3ag.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
Assertion
Ref Expression
tfr1onlem3ag (𝐻𝑉 → (𝐻𝐴 ↔ ∃𝑧𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤)))))
Distinct variable groups:   𝑓,𝐺,𝑤,𝑥,𝑦,𝑧   𝑓,𝐻,𝑤,𝑥,𝑦,𝑧   𝑓,𝑋,𝑥,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑓)   𝑉(𝑥,𝑦,𝑧,𝑤,𝑓)   𝑋(𝑦,𝑤)

Proof of Theorem tfr1onlem3ag
StepHypRef Expression
1 fneq12 5386 . . . 4 ((𝑓 = 𝐻𝑥 = 𝑧) → (𝑓 Fn 𝑥𝐻 Fn 𝑧))
2 simpll 527 . . . . . . 7 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑓 = 𝐻)
3 simpr 110 . . . . . . 7 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
42, 3fveq12d 5606 . . . . . 6 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓𝑦) = (𝐻𝑤))
52, 3reseq12d 4979 . . . . . . 7 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓𝑦) = (𝐻𝑤))
65fveq2d 5603 . . . . . 6 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝐺‘(𝑓𝑦)) = (𝐺‘(𝐻𝑤)))
74, 6eqeq12d 2222 . . . . 5 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ (𝐻𝑤) = (𝐺‘(𝐻𝑤))))
8 simplr 528 . . . . 5 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧)
97, 8cbvraldva2 2749 . . . 4 ((𝑓 = 𝐻𝑥 = 𝑧) → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤))))
101, 9anbi12d 473 . . 3 ((𝑓 = 𝐻𝑥 = 𝑧) → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ (𝐻 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤)))))
1110cbvrexdva 2752 . 2 (𝑓 = 𝐻 → (∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑧𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤)))))
12 tfr1onlem3ag.1 . 2 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
1311, 12elab2g 2927 1 (𝐻𝑉 → (𝐻𝐴 ↔ ∃𝑧𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  {cab 2193  wral 2486  wrex 2487  cres 4695   Fn wfn 5285  cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298
This theorem is referenced by:  tfr1onlem3  6447  tfr1onlemsucaccv  6450  tfr1onlembxssdm  6452  tfr1onlemres  6458
  Copyright terms: Public domain W3C validator