| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfr1onlem3ag | GIF version | ||
| Description: Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3ag 6453 but for tfr1on 6494 related lemmas). (Contributed by Jim Kingdon, 13-Mar-2022.) |
| Ref | Expression |
|---|---|
| tfr1onlem3ag.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
| Ref | Expression |
|---|---|
| tfr1onlem3ag | ⊢ (𝐻 ∈ 𝑉 → (𝐻 ∈ 𝐴 ↔ ∃𝑧 ∈ 𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq12 5413 | . . . 4 ⊢ ((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) → (𝑓 Fn 𝑥 ↔ 𝐻 Fn 𝑧)) | |
| 2 | simpll 527 | . . . . . . 7 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑓 = 𝐻) | |
| 3 | simpr 110 | . . . . . . 7 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤) | |
| 4 | 2, 3 | fveq12d 5633 | . . . . . 6 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓‘𝑦) = (𝐻‘𝑤)) |
| 5 | 2, 3 | reseq12d 5005 | . . . . . . 7 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓 ↾ 𝑦) = (𝐻 ↾ 𝑤)) |
| 6 | 5 | fveq2d 5630 | . . . . . 6 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝐺‘(𝑓 ↾ 𝑦)) = (𝐺‘(𝐻 ↾ 𝑤))) |
| 7 | 4, 6 | eqeq12d 2244 | . . . . 5 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤)))) |
| 8 | simplr 528 | . . . . 5 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧) | |
| 9 | 7, 8 | cbvraldva2 2772 | . . . 4 ⊢ ((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤)))) |
| 10 | 1, 9 | anbi12d 473 | . . 3 ⊢ ((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) → ((𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ (𝐻 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤))))) |
| 11 | 10 | cbvrexdva 2775 | . 2 ⊢ (𝑓 = 𝐻 → (∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ ∃𝑧 ∈ 𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤))))) |
| 12 | tfr1onlem3ag.1 | . 2 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
| 13 | 11, 12 | elab2g 2950 | 1 ⊢ (𝐻 ∈ 𝑉 → (𝐻 ∈ 𝐴 ↔ ∃𝑧 ∈ 𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤))))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {cab 2215 ∀wral 2508 ∃wrex 2509 ↾ cres 4720 Fn wfn 5312 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 |
| This theorem is referenced by: tfr1onlem3 6482 tfr1onlemsucaccv 6485 tfr1onlembxssdm 6487 tfr1onlemres 6493 |
| Copyright terms: Public domain | W3C validator |