| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfr1onlem3ag | GIF version | ||
| Description: Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3ag 6418 but for tfr1on 6459 related lemmas). (Contributed by Jim Kingdon, 13-Mar-2022.) |
| Ref | Expression |
|---|---|
| tfr1onlem3ag.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
| Ref | Expression |
|---|---|
| tfr1onlem3ag | ⊢ (𝐻 ∈ 𝑉 → (𝐻 ∈ 𝐴 ↔ ∃𝑧 ∈ 𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq12 5386 | . . . 4 ⊢ ((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) → (𝑓 Fn 𝑥 ↔ 𝐻 Fn 𝑧)) | |
| 2 | simpll 527 | . . . . . . 7 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑓 = 𝐻) | |
| 3 | simpr 110 | . . . . . . 7 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤) | |
| 4 | 2, 3 | fveq12d 5606 | . . . . . 6 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓‘𝑦) = (𝐻‘𝑤)) |
| 5 | 2, 3 | reseq12d 4979 | . . . . . . 7 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓 ↾ 𝑦) = (𝐻 ↾ 𝑤)) |
| 6 | 5 | fveq2d 5603 | . . . . . 6 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝐺‘(𝑓 ↾ 𝑦)) = (𝐺‘(𝐻 ↾ 𝑤))) |
| 7 | 4, 6 | eqeq12d 2222 | . . . . 5 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤)))) |
| 8 | simplr 528 | . . . . 5 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧) | |
| 9 | 7, 8 | cbvraldva2 2749 | . . . 4 ⊢ ((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤)))) |
| 10 | 1, 9 | anbi12d 473 | . . 3 ⊢ ((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) → ((𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ (𝐻 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤))))) |
| 11 | 10 | cbvrexdva 2752 | . 2 ⊢ (𝑓 = 𝐻 → (∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ ∃𝑧 ∈ 𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤))))) |
| 12 | tfr1onlem3ag.1 | . 2 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
| 13 | 11, 12 | elab2g 2927 | 1 ⊢ (𝐻 ∈ 𝑉 → (𝐻 ∈ 𝐴 ↔ ∃𝑧 ∈ 𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤))))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 {cab 2193 ∀wral 2486 ∃wrex 2487 ↾ cres 4695 Fn wfn 5285 ‘cfv 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 |
| This theorem is referenced by: tfr1onlem3 6447 tfr1onlemsucaccv 6450 tfr1onlembxssdm 6452 tfr1onlemres 6458 |
| Copyright terms: Public domain | W3C validator |