![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfr1onlem3ag | GIF version |
Description: Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3ag 6313 but for tfr1on 6354 related lemmas). (Contributed by Jim Kingdon, 13-Mar-2022.) |
Ref | Expression |
---|---|
tfr1onlem3ag.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfr1onlem3ag | ⊢ (𝐻 ∈ 𝑉 → (𝐻 ∈ 𝐴 ↔ ∃𝑧 ∈ 𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq12 5311 | . . . 4 ⊢ ((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) → (𝑓 Fn 𝑥 ↔ 𝐻 Fn 𝑧)) | |
2 | simpll 527 | . . . . . . 7 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑓 = 𝐻) | |
3 | simpr 110 | . . . . . . 7 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤) | |
4 | 2, 3 | fveq12d 5524 | . . . . . 6 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓‘𝑦) = (𝐻‘𝑤)) |
5 | 2, 3 | reseq12d 4910 | . . . . . . 7 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓 ↾ 𝑦) = (𝐻 ↾ 𝑤)) |
6 | 5 | fveq2d 5521 | . . . . . 6 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝐺‘(𝑓 ↾ 𝑦)) = (𝐺‘(𝐻 ↾ 𝑤))) |
7 | 4, 6 | eqeq12d 2192 | . . . . 5 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤)))) |
8 | simplr 528 | . . . . 5 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧) | |
9 | 7, 8 | cbvraldva2 2712 | . . . 4 ⊢ ((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤)))) |
10 | 1, 9 | anbi12d 473 | . . 3 ⊢ ((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) → ((𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ (𝐻 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤))))) |
11 | 10 | cbvrexdva 2715 | . 2 ⊢ (𝑓 = 𝐻 → (∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ ∃𝑧 ∈ 𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤))))) |
12 | tfr1onlem3ag.1 | . 2 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
13 | 11, 12 | elab2g 2886 | 1 ⊢ (𝐻 ∈ 𝑉 → (𝐻 ∈ 𝐴 ↔ ∃𝑧 ∈ 𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 {cab 2163 ∀wral 2455 ∃wrex 2456 ↾ cres 4630 Fn wfn 5213 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-res 4640 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 |
This theorem is referenced by: tfr1onlem3 6342 tfr1onlemsucaccv 6345 tfr1onlembxssdm 6347 tfr1onlemres 6353 |
Copyright terms: Public domain | W3C validator |