ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlem3ag GIF version

Theorem tfr1onlem3ag 6305
Description: Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3ag 6277 but for tfr1on 6318 related lemmas). (Contributed by Jim Kingdon, 13-Mar-2022.)
Hypothesis
Ref Expression
tfr1onlem3ag.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
Assertion
Ref Expression
tfr1onlem3ag (𝐻𝑉 → (𝐻𝐴 ↔ ∃𝑧𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤)))))
Distinct variable groups:   𝑓,𝐺,𝑤,𝑥,𝑦,𝑧   𝑓,𝐻,𝑤,𝑥,𝑦,𝑧   𝑓,𝑋,𝑥,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑓)   𝑉(𝑥,𝑦,𝑧,𝑤,𝑓)   𝑋(𝑦,𝑤)

Proof of Theorem tfr1onlem3ag
StepHypRef Expression
1 fneq12 5281 . . . 4 ((𝑓 = 𝐻𝑥 = 𝑧) → (𝑓 Fn 𝑥𝐻 Fn 𝑧))
2 simpll 519 . . . . . . 7 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑓 = 𝐻)
3 simpr 109 . . . . . . 7 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
42, 3fveq12d 5493 . . . . . 6 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓𝑦) = (𝐻𝑤))
52, 3reseq12d 4885 . . . . . . 7 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓𝑦) = (𝐻𝑤))
65fveq2d 5490 . . . . . 6 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝐺‘(𝑓𝑦)) = (𝐺‘(𝐻𝑤)))
74, 6eqeq12d 2180 . . . . 5 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ (𝐻𝑤) = (𝐺‘(𝐻𝑤))))
8 simplr 520 . . . . 5 (((𝑓 = 𝐻𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧)
97, 8cbvraldva2 2699 . . . 4 ((𝑓 = 𝐻𝑥 = 𝑧) → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤))))
101, 9anbi12d 465 . . 3 ((𝑓 = 𝐻𝑥 = 𝑧) → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ (𝐻 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤)))))
1110cbvrexdva 2702 . 2 (𝑓 = 𝐻 → (∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑧𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤)))))
12 tfr1onlem3ag.1 . 2 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
1311, 12elab2g 2873 1 (𝐻𝑉 → (𝐻𝐴 ↔ ∃𝑧𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  {cab 2151  wral 2444  wrex 2445  cres 4606   Fn wfn 5183  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  tfr1onlem3  6306  tfr1onlemsucaccv  6309  tfr1onlembxssdm  6311  tfr1onlemres  6317
  Copyright terms: Public domain W3C validator