![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfr1onlem3ag | GIF version |
Description: Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3ag 6334 but for tfr1on 6375 related lemmas). (Contributed by Jim Kingdon, 13-Mar-2022.) |
Ref | Expression |
---|---|
tfr1onlem3ag.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfr1onlem3ag | ⊢ (𝐻 ∈ 𝑉 → (𝐻 ∈ 𝐴 ↔ ∃𝑧 ∈ 𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq12 5328 | . . . 4 ⊢ ((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) → (𝑓 Fn 𝑥 ↔ 𝐻 Fn 𝑧)) | |
2 | simpll 527 | . . . . . . 7 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑓 = 𝐻) | |
3 | simpr 110 | . . . . . . 7 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤) | |
4 | 2, 3 | fveq12d 5541 | . . . . . 6 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓‘𝑦) = (𝐻‘𝑤)) |
5 | 2, 3 | reseq12d 4926 | . . . . . . 7 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓 ↾ 𝑦) = (𝐻 ↾ 𝑤)) |
6 | 5 | fveq2d 5538 | . . . . . 6 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝐺‘(𝑓 ↾ 𝑦)) = (𝐺‘(𝐻 ↾ 𝑤))) |
7 | 4, 6 | eqeq12d 2204 | . . . . 5 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤)))) |
8 | simplr 528 | . . . . 5 ⊢ (((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧) | |
9 | 7, 8 | cbvraldva2 2725 | . . . 4 ⊢ ((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤)))) |
10 | 1, 9 | anbi12d 473 | . . 3 ⊢ ((𝑓 = 𝐻 ∧ 𝑥 = 𝑧) → ((𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ (𝐻 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤))))) |
11 | 10 | cbvrexdva 2728 | . 2 ⊢ (𝑓 = 𝐻 → (∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ ∃𝑧 ∈ 𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤))))) |
12 | tfr1onlem3ag.1 | . 2 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
13 | 11, 12 | elab2g 2899 | 1 ⊢ (𝐻 ∈ 𝑉 → (𝐻 ∈ 𝐴 ↔ ∃𝑧 ∈ 𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 {cab 2175 ∀wral 2468 ∃wrex 2469 ↾ cres 4646 Fn wfn 5230 ‘cfv 5235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-res 4656 df-iota 5196 df-fun 5237 df-fn 5238 df-fv 5243 |
This theorem is referenced by: tfr1onlem3 6363 tfr1onlemsucaccv 6366 tfr1onlembxssdm 6368 tfr1onlemres 6374 |
Copyright terms: Public domain | W3C validator |