ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem3ag GIF version

Theorem tfrlem3ag 6407
Description: Lemma for transfinite recursion. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by Jim Kingdon, 5-Jul-2019.)
Hypothesis
Ref Expression
tfrlem3.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem3ag (𝐺 ∈ V → (𝐺𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤)))))
Distinct variable groups:   𝑤,𝑓,𝑥,𝑦,𝑧,𝐹   𝑓,𝐺,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑓)

Proof of Theorem tfrlem3ag
StepHypRef Expression
1 fneq12 5375 . . . 4 ((𝑓 = 𝐺𝑥 = 𝑧) → (𝑓 Fn 𝑥𝐺 Fn 𝑧))
2 simpll 527 . . . . . . 7 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑓 = 𝐺)
3 simpr 110 . . . . . . 7 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
42, 3fveq12d 5595 . . . . . 6 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓𝑦) = (𝐺𝑤))
52, 3reseq12d 4968 . . . . . . 7 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓𝑦) = (𝐺𝑤))
65fveq2d 5592 . . . . . 6 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝐹‘(𝑓𝑦)) = (𝐹‘(𝐺𝑤)))
74, 6eqeq12d 2221 . . . . 5 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → ((𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ (𝐺𝑤) = (𝐹‘(𝐺𝑤))))
8 simplr 528 . . . . 5 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧)
97, 8cbvraldva2 2746 . . . 4 ((𝑓 = 𝐺𝑥 = 𝑧) → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤))))
101, 9anbi12d 473 . . 3 ((𝑓 = 𝐺𝑥 = 𝑧) → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ (𝐺 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤)))))
1110cbvrexdva 2749 . 2 (𝑓 = 𝐺 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤)))))
12 tfrlem3.1 . 2 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
1311, 12elab2g 2924 1 (𝐺 ∈ V → (𝐺𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  {cab 2192  wral 2485  wrex 2486  Vcvv 2773  Oncon0 4417  cres 4684   Fn wfn 5274  cfv 5279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-br 4051  df-opab 4113  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-res 4694  df-iota 5240  df-fun 5281  df-fn 5282  df-fv 5287
This theorem is referenced by:  tfrlemisucaccv  6423
  Copyright terms: Public domain W3C validator