ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apneg GIF version

Theorem apneg 7988
Description: Negation respects apartness. (Contributed by Jim Kingdon, 14-Feb-2020.)
Assertion
Ref Expression
apneg ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵))

Proof of Theorem apneg
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7387 . . 3 (𝐵 ∈ ℂ → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)))
21adantl 271 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)))
3 cnre 7387 . . . . . 6 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
43ad3antrrr 476 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
5 simpr 108 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐴 = (𝑥 + (i · 𝑦)))
6 simpllr 501 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐵 = (𝑧 + (i · 𝑤)))
75, 6breq12d 3824 . . . . . . . 8 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐵 ↔ (𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤))))
8 simplrl 502 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑥 ∈ ℝ)
9 simplrr 503 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑦 ∈ ℝ)
10 simprl 498 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑧 ∈ ℝ)
1110ad3antrrr 476 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑧 ∈ ℝ)
12 simprr 499 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑤 ∈ ℝ)
1312ad3antrrr 476 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑤 ∈ ℝ)
14 apreim 7980 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤)) ↔ (𝑥 # 𝑧𝑦 # 𝑤)))
158, 9, 11, 13, 14syl22anc 1171 . . . . . . . 8 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤)) ↔ (𝑥 # 𝑧𝑦 # 𝑤)))
168renegcld 7761 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → -𝑥 ∈ ℝ)
179renegcld 7761 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → -𝑦 ∈ ℝ)
1811renegcld 7761 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → -𝑧 ∈ ℝ)
1913renegcld 7761 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → -𝑤 ∈ ℝ)
20 apreim 7980 . . . . . . . . . 10 (((-𝑥 ∈ ℝ ∧ -𝑦 ∈ ℝ) ∧ (-𝑧 ∈ ℝ ∧ -𝑤 ∈ ℝ)) → ((-𝑥 + (i · -𝑦)) # (-𝑧 + (i · -𝑤)) ↔ (-𝑥 # -𝑧 ∨ -𝑦 # -𝑤)))
2116, 17, 18, 19, 20syl22anc 1171 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((-𝑥 + (i · -𝑦)) # (-𝑧 + (i · -𝑤)) ↔ (-𝑥 # -𝑧 ∨ -𝑦 # -𝑤)))
228recnd 7419 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑥 ∈ ℂ)
23 ax-icn 7343 . . . . . . . . . . . . . 14 i ∈ ℂ
2423a1i 9 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → i ∈ ℂ)
259recnd 7419 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑦 ∈ ℂ)
2624, 25mulcld 7411 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (i · 𝑦) ∈ ℂ)
2722, 26negdid 7709 . . . . . . . . . . 11 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → -(𝑥 + (i · 𝑦)) = (-𝑥 + -(i · 𝑦)))
285negeqd 7580 . . . . . . . . . . 11 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → -𝐴 = -(𝑥 + (i · 𝑦)))
2924, 25mulneg2d 7793 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (i · -𝑦) = -(i · 𝑦))
3029oveq2d 5607 . . . . . . . . . . 11 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (-𝑥 + (i · -𝑦)) = (-𝑥 + -(i · 𝑦)))
3127, 28, 303eqtr4d 2125 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → -𝐴 = (-𝑥 + (i · -𝑦)))
3211recnd 7419 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑧 ∈ ℂ)
3313recnd 7419 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑤 ∈ ℂ)
3424, 33mulcld 7411 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (i · 𝑤) ∈ ℂ)
3532, 34negdid 7709 . . . . . . . . . . 11 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → -(𝑧 + (i · 𝑤)) = (-𝑧 + -(i · 𝑤)))
366negeqd 7580 . . . . . . . . . . 11 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → -𝐵 = -(𝑧 + (i · 𝑤)))
3724, 33mulneg2d 7793 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (i · -𝑤) = -(i · 𝑤))
3837oveq2d 5607 . . . . . . . . . . 11 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (-𝑧 + (i · -𝑤)) = (-𝑧 + -(i · 𝑤)))
3935, 36, 383eqtr4d 2125 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → -𝐵 = (-𝑧 + (i · -𝑤)))
4031, 39breq12d 3824 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (-𝐴 # -𝐵 ↔ (-𝑥 + (i · -𝑦)) # (-𝑧 + (i · -𝑤))))
41 reapneg 7974 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 # 𝑧 ↔ -𝑥 # -𝑧))
428, 11, 41syl2anc 403 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑥 # 𝑧 ↔ -𝑥 # -𝑧))
43 reapneg 7974 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑦 # 𝑤 ↔ -𝑦 # -𝑤))
449, 13, 43syl2anc 403 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑦 # 𝑤 ↔ -𝑦 # -𝑤))
4542, 44orbi12d 740 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 # 𝑧𝑦 # 𝑤) ↔ (-𝑥 # -𝑧 ∨ -𝑦 # -𝑤)))
4621, 40, 453bitr4rd 219 . . . . . . . 8 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 # 𝑧𝑦 # 𝑤) ↔ -𝐴 # -𝐵))
477, 15, 463bitrd 212 . . . . . . 7 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵))
4847ex 113 . . . . . 6 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵)))
4948rexlimdvva 2490 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵)))
504, 49mpd 13 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵))
5150ex 113 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → (𝐵 = (𝑧 + (i · 𝑤)) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵)))
5251rexlimdvva 2490 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵)))
532, 52mpd 13 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 662   = wceq 1285  wcel 1434  wrex 2354   class class class wbr 3811  (class class class)co 5591  cc 7251  cr 7252  ici 7255   + caddc 7256   · cmul 7258  -cneg 7557   # cap 7958
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-mulrcl 7347  ax-addcom 7348  ax-mulcom 7349  ax-addass 7350  ax-mulass 7351  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-1rid 7355  ax-0id 7356  ax-rnegex 7357  ax-precex 7358  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-lttrn 7362  ax-pre-apti 7363  ax-pre-ltadd 7364  ax-pre-mulgt0 7365
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-id 4084  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-iota 4934  df-fun 4971  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-pnf 7427  df-mnf 7428  df-ltxr 7430  df-sub 7558  df-neg 7559  df-reap 7952  df-ap 7959
This theorem is referenced by:  mulext1  7989  negap0  8006  cjap  10167
  Copyright terms: Public domain W3C validator