ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cjap GIF version

Theorem cjap 10167
Description: Complex conjugate and apartness. (Contributed by Jim Kingdon, 14-Jun-2020.)
Assertion
Ref Expression
cjap ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) # (∗‘𝐵) ↔ 𝐴 # 𝐵))

Proof of Theorem cjap
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7387 . . 3 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
21adantr 270 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
3 cnre 7387 . . . . . 6 (𝐵 ∈ ℂ → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)))
43ad3antlr 477 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)))
5 simplrr 503 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑦 ∈ ℝ)
65ad2antrr 472 . . . . . . . . . . 11 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → 𝑦 ∈ ℝ)
76recnd 7419 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → 𝑦 ∈ ℂ)
8 simplrr 503 . . . . . . . . . . 11 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → 𝑤 ∈ ℝ)
98recnd 7419 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → 𝑤 ∈ ℂ)
10 apneg 7988 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑦 # 𝑤 ↔ -𝑦 # -𝑤))
117, 9, 10syl2anc 403 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (𝑦 # 𝑤 ↔ -𝑦 # -𝑤))
1211orbi2d 737 . . . . . . . 8 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → ((𝑥 # 𝑧𝑦 # 𝑤) ↔ (𝑥 # 𝑧 ∨ -𝑦 # -𝑤)))
13 simpllr 501 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → 𝐴 = (𝑥 + (i · 𝑦)))
14 simpr 108 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → 𝐵 = (𝑧 + (i · 𝑤)))
1513, 14breq12d 3824 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (𝐴 # 𝐵 ↔ (𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤))))
16 simplrl 502 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑥 ∈ ℝ)
1716ad2antrr 472 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → 𝑥 ∈ ℝ)
18 simplrl 502 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → 𝑧 ∈ ℝ)
19 apreim 7980 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤)) ↔ (𝑥 # 𝑧𝑦 # 𝑤)))
2017, 6, 18, 8, 19syl22anc 1171 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → ((𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤)) ↔ (𝑥 # 𝑧𝑦 # 𝑤)))
2115, 20bitrd 186 . . . . . . . 8 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (𝐴 # 𝐵 ↔ (𝑥 # 𝑧𝑦 # 𝑤)))
2213fveq2d 5257 . . . . . . . . . . 11 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (∗‘𝐴) = (∗‘(𝑥 + (i · 𝑦))))
23 cjreim 10164 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (∗‘(𝑥 + (i · 𝑦))) = (𝑥 − (i · 𝑦)))
2417, 6, 23syl2anc 403 . . . . . . . . . . 11 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (∗‘(𝑥 + (i · 𝑦))) = (𝑥 − (i · 𝑦)))
2522, 24eqtrd 2115 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (∗‘𝐴) = (𝑥 − (i · 𝑦)))
2614fveq2d 5257 . . . . . . . . . . 11 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (∗‘𝐵) = (∗‘(𝑧 + (i · 𝑤))))
27 cjreim 10164 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (∗‘(𝑧 + (i · 𝑤))) = (𝑧 − (i · 𝑤)))
2818, 8, 27syl2anc 403 . . . . . . . . . . 11 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (∗‘(𝑧 + (i · 𝑤))) = (𝑧 − (i · 𝑤)))
2926, 28eqtrd 2115 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (∗‘𝐵) = (𝑧 − (i · 𝑤)))
3025, 29breq12d 3824 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → ((∗‘𝐴) # (∗‘𝐵) ↔ (𝑥 − (i · 𝑦)) # (𝑧 − (i · 𝑤))))
3117recnd 7419 . . . . . . . . . . 11 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → 𝑥 ∈ ℂ)
32 ax-icn 7343 . . . . . . . . . . . 12 i ∈ ℂ
3332a1i 9 . . . . . . . . . . 11 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → i ∈ ℂ)
34 submul2 7780 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 − (i · 𝑦)) = (𝑥 + (i · -𝑦)))
3531, 33, 7, 34syl3anc 1170 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (𝑥 − (i · 𝑦)) = (𝑥 + (i · -𝑦)))
3618recnd 7419 . . . . . . . . . . 11 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → 𝑧 ∈ ℂ)
37 submul2 7780 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ∧ i ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 − (i · 𝑤)) = (𝑧 + (i · -𝑤)))
3836, 33, 9, 37syl3anc 1170 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (𝑧 − (i · 𝑤)) = (𝑧 + (i · -𝑤)))
3935, 38breq12d 3824 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → ((𝑥 − (i · 𝑦)) # (𝑧 − (i · 𝑤)) ↔ (𝑥 + (i · -𝑦)) # (𝑧 + (i · -𝑤))))
406renegcld 7761 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → -𝑦 ∈ ℝ)
418renegcld 7761 . . . . . . . . . 10 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → -𝑤 ∈ ℝ)
42 apreim 7980 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ -𝑦 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ -𝑤 ∈ ℝ)) → ((𝑥 + (i · -𝑦)) # (𝑧 + (i · -𝑤)) ↔ (𝑥 # 𝑧 ∨ -𝑦 # -𝑤)))
4317, 40, 18, 41, 42syl22anc 1171 . . . . . . . . 9 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → ((𝑥 + (i · -𝑦)) # (𝑧 + (i · -𝑤)) ↔ (𝑥 # 𝑧 ∨ -𝑦 # -𝑤)))
4430, 39, 433bitrd 212 . . . . . . . 8 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → ((∗‘𝐴) # (∗‘𝐵) ↔ (𝑥 # 𝑧 ∨ -𝑦 # -𝑤)))
4512, 21, 443bitr4rd 219 . . . . . . 7 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → ((∗‘𝐴) # (∗‘𝐵) ↔ 𝐴 # 𝐵))
4645ex 113 . . . . . 6 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → (𝐵 = (𝑧 + (i · 𝑤)) → ((∗‘𝐴) # (∗‘𝐵) ↔ 𝐴 # 𝐵)))
4746rexlimdvva 2490 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)) → ((∗‘𝐴) # (∗‘𝐵) ↔ 𝐴 # 𝐵)))
484, 47mpd 13 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((∗‘𝐴) # (∗‘𝐵) ↔ 𝐴 # 𝐵))
4948ex 113 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 = (𝑥 + (i · 𝑦)) → ((∗‘𝐴) # (∗‘𝐵) ↔ 𝐴 # 𝐵)))
5049rexlimdvva 2490 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → ((∗‘𝐴) # (∗‘𝐵) ↔ 𝐴 # 𝐵)))
512, 50mpd 13 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) # (∗‘𝐵) ↔ 𝐴 # 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 662   = wceq 1285  wcel 1434  wrex 2354   class class class wbr 3811  cfv 4969  (class class class)co 5591  cc 7251  cr 7252  ici 7255   + caddc 7256   · cmul 7258  cmin 7556  -cneg 7557   # cap 7958  ccj 10100
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-mulrcl 7347  ax-addcom 7348  ax-mulcom 7349  ax-addass 7350  ax-mulass 7351  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-1rid 7355  ax-0id 7356  ax-rnegex 7357  ax-precex 7358  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-apti 7363  ax-pre-ltadd 7364  ax-pre-mulgt0 7365  ax-pre-mulext 7366
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4084  df-po 4087  df-iso 4088  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-reap 7952  df-ap 7959  df-div 8038  df-2 8375  df-cj 10103  df-re 10104  df-im 10105
This theorem is referenced by:  cjap0  10168
  Copyright terms: Public domain W3C validator