Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulrid | GIF version |
Description: Utility theorem: index-independent form of df-mulr 12494. (Contributed by Mario Carneiro, 8-Jun-2013.) |
Ref | Expression |
---|---|
mulrid | ⊢ .r = Slot (.r‘ndx) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mulr 12494 | . 2 ⊢ .r = Slot 3 | |
2 | 3nn 9040 | . 2 ⊢ 3 ∈ ℕ | |
3 | 1, 2 | ndxid 12440 | 1 ⊢ .r = Slot (.r‘ndx) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ‘cfv 5198 3c3 8930 ndxcnx 12413 Slot cslot 12415 .rcmulr 12481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-inn 8879 df-2 8937 df-3 8938 df-ndx 12419 df-slot 12420 df-mulr 12494 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |