ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulrid GIF version

Theorem mulrid 8076
Description: 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mulrid (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)

Proof of Theorem mulrid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 8075 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
2 recn 8065 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
3 ax-icn 8027 . . . . . . 7 i ∈ ℂ
4 recn 8065 . . . . . . 7 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
5 mulcl 8059 . . . . . . 7 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
63, 4, 5sylancr 414 . . . . . 6 (𝑦 ∈ ℝ → (i · 𝑦) ∈ ℂ)
7 ax-1cn 8025 . . . . . . 7 1 ∈ ℂ
8 adddir 8070 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1)))
97, 8mp3an3 1339 . . . . . 6 ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1)))
102, 6, 9syl2an 289 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1)))
11 ax-1rid 8039 . . . . . 6 (𝑥 ∈ ℝ → (𝑥 · 1) = 𝑥)
12 mulass 8063 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝑦) · 1) = (i · (𝑦 · 1)))
133, 7, 12mp3an13 1341 . . . . . . . 8 (𝑦 ∈ ℂ → ((i · 𝑦) · 1) = (i · (𝑦 · 1)))
144, 13syl 14 . . . . . . 7 (𝑦 ∈ ℝ → ((i · 𝑦) · 1) = (i · (𝑦 · 1)))
15 ax-1rid 8039 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦 · 1) = 𝑦)
1615oveq2d 5967 . . . . . . 7 (𝑦 ∈ ℝ → (i · (𝑦 · 1)) = (i · 𝑦))
1714, 16eqtrd 2239 . . . . . 6 (𝑦 ∈ ℝ → ((i · 𝑦) · 1) = (i · 𝑦))
1811, 17oveqan12d 5970 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 · 1) + ((i · 𝑦) · 1)) = (𝑥 + (i · 𝑦)))
1910, 18eqtrd 2239 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) · 1) = (𝑥 + (i · 𝑦)))
20 oveq1 5958 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = ((𝑥 + (i · 𝑦)) · 1))
21 id 19 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦)))
2220, 21eqeq12d 2221 . . . 4 (𝐴 = (𝑥 + (i · 𝑦)) → ((𝐴 · 1) = 𝐴 ↔ ((𝑥 + (i · 𝑦)) · 1) = (𝑥 + (i · 𝑦))))
2319, 22syl5ibrcom 157 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = 𝐴))
2423rexlimivv 2630 . 2 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = 𝐴)
251, 24syl 14 1 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wrex 2486  (class class class)co 5951  cc 7930  cr 7931  1c1 7933  ici 7934   + caddc 7935   · cmul 7937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-resscn 8024  ax-1cn 8025  ax-icn 8027  ax-addcl 8028  ax-mulcl 8030  ax-mulcom 8033  ax-mulass 8035  ax-distr 8036  ax-1rid 8039  ax-cnre 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-iota 5237  df-fv 5284  df-ov 5954
This theorem is referenced by:  mullid  8077  mulridi  8081  mulridd  8096  muleqadd  8748  divdivap1  8803  conjmulap  8809  nnmulcl  9064  expmul  10736  binom21  10804  binom2sub1  10806  bernneq  10812  hashiun  11833  fproddccvg  11927  prodmodclem2a  11931  efexp  12037  cncrng  14375  cnfld1  14378  ecxp  15417  lgsdilem2  15557
  Copyright terms: Public domain W3C validator