| Step | Hyp | Ref
| Expression |
| 1 | | cnre 8022 |
. . 3
⊢ (𝐴 ∈ ℂ →
∃𝑎 ∈ ℝ
∃𝑏 ∈ ℝ
𝐴 = (𝑎 + (i · 𝑏))) |
| 2 | | recexaplem2 8679 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ (𝑎 + (i · 𝑏)) # 0) → ((𝑎 · 𝑎) + (𝑏 · 𝑏)) # 0) |
| 3 | 2 | 3expia 1207 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑎 + (i · 𝑏)) # 0 → ((𝑎 · 𝑎) + (𝑏 · 𝑏)) # 0)) |
| 4 | | remulcl 8007 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (𝑎 · 𝑎) ∈ ℝ) |
| 5 | 4 | anidms 397 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ ℝ → (𝑎 · 𝑎) ∈ ℝ) |
| 6 | | remulcl 8007 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑏 · 𝑏) ∈ ℝ) |
| 7 | 6 | anidms 397 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ ℝ → (𝑏 · 𝑏) ∈ ℝ) |
| 8 | | readdcl 8005 |
. . . . . . . . . . 11
⊢ (((𝑎 · 𝑎) ∈ ℝ ∧ (𝑏 · 𝑏) ∈ ℝ) → ((𝑎 · 𝑎) + (𝑏 · 𝑏)) ∈ ℝ) |
| 9 | 5, 7, 8 | syl2an 289 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑎 · 𝑎) + (𝑏 · 𝑏)) ∈ ℝ) |
| 10 | | 0re 8026 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
| 11 | | apreap 8614 |
. . . . . . . . . 10
⊢ ((((𝑎 · 𝑎) + (𝑏 · 𝑏)) ∈ ℝ ∧ 0 ∈ ℝ)
→ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) # 0 ↔ ((𝑎 · 𝑎) + (𝑏 · 𝑏)) #ℝ 0)) |
| 12 | 9, 10, 11 | sylancl 413 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((𝑎 · 𝑎) + (𝑏 · 𝑏)) # 0 ↔ ((𝑎 · 𝑎) + (𝑏 · 𝑏)) #ℝ 0)) |
| 13 | | recexre 8605 |
. . . . . . . . . . . 12
⊢ ((((𝑎 · 𝑎) + (𝑏 · 𝑏)) ∈ ℝ ∧ ((𝑎 · 𝑎) + (𝑏 · 𝑏)) #ℝ 0) → ∃𝑦 ∈ ℝ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1) |
| 14 | 9, 13 | sylan 283 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((𝑎 · 𝑎) + (𝑏 · 𝑏)) #ℝ 0) → ∃𝑦 ∈ ℝ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1) |
| 15 | | recn 8012 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ ℝ → 𝑎 ∈
ℂ) |
| 16 | | recn 8012 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ ℝ → 𝑏 ∈
ℂ) |
| 17 | | recn 8012 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) |
| 18 | | ax-icn 7974 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ i ∈
ℂ |
| 19 | | mulcl 8006 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((i
∈ ℂ ∧ 𝑏
∈ ℂ) → (i · 𝑏) ∈ ℂ) |
| 20 | 18, 19 | mpan 424 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ ℂ → (i
· 𝑏) ∈
ℂ) |
| 21 | | subcl 8225 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 ∈ ℂ ∧ (i
· 𝑏) ∈ ℂ)
→ (𝑎 − (i
· 𝑏)) ∈
ℂ) |
| 22 | 20, 21 | sylan2 286 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 − (i · 𝑏)) ∈
ℂ) |
| 23 | | mulcl 8006 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑎 − (i · 𝑏)) ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑎 − (i · 𝑏)) · 𝑦) ∈ ℂ) |
| 24 | 22, 23 | sylan 283 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → ((𝑎 − (i · 𝑏)) · 𝑦) ∈ ℂ) |
| 25 | 24 | adantr 276 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) ∧ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1) → ((𝑎 − (i · 𝑏)) · 𝑦) ∈ ℂ) |
| 26 | | addcl 8004 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑎 ∈ ℂ ∧ (i
· 𝑏) ∈ ℂ)
→ (𝑎 + (i ·
𝑏)) ∈
ℂ) |
| 27 | 20, 26 | sylan2 286 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + (i · 𝑏)) ∈
ℂ) |
| 28 | 27 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑎 + (i · 𝑏)) ∈
ℂ) |
| 29 | 22 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (𝑎 − (i · 𝑏)) ∈
ℂ) |
| 30 | | simpr 110 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈
ℂ) |
| 31 | 28, 29, 30 | mulassd 8050 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (((𝑎 + (i · 𝑏)) · (𝑎 − (i · 𝑏))) · 𝑦) = ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦))) |
| 32 | | recextlem1 8678 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝑎 + (i · 𝑏)) · (𝑎 − (i · 𝑏))) = ((𝑎 · 𝑎) + (𝑏 · 𝑏))) |
| 33 | 32 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → ((𝑎 + (i · 𝑏)) · (𝑎 − (i · 𝑏))) = ((𝑎 · 𝑎) + (𝑏 · 𝑏))) |
| 34 | 33 | oveq1d 5937 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → (((𝑎 + (i · 𝑏)) · (𝑎 − (i · 𝑏))) · 𝑦) = (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦)) |
| 35 | 31, 34 | eqtr3d 2231 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) → ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)) = (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦)) |
| 36 | | id 19 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1) |
| 37 | 35, 36 | sylan9eq 2249 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) ∧ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1) → ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)) = 1) |
| 38 | | oveq2 5930 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = ((𝑎 − (i · 𝑏)) · 𝑦) → ((𝑎 + (i · 𝑏)) · 𝑥) = ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦))) |
| 39 | 38 | eqeq1d 2205 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = ((𝑎 − (i · 𝑏)) · 𝑦) → (((𝑎 + (i · 𝑏)) · 𝑥) = 1 ↔ ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)) = 1)) |
| 40 | 39 | rspcev 2868 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑎 − (i · 𝑏)) · 𝑦) ∈ ℂ ∧ ((𝑎 + (i · 𝑏)) · ((𝑎 − (i · 𝑏)) · 𝑦)) = 1) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1) |
| 41 | 25, 37, 40 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) ∧ 𝑦 ∈ ℂ) ∧ (((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1) |
| 42 | 41 | exp31 364 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑦 ∈ ℂ → ((((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))) |
| 43 | 17, 42 | syl5 32 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑦 ∈ ℝ → ((((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1))) |
| 44 | 43 | rexlimdv 2613 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) →
(∃𝑦 ∈ ℝ
(((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)) |
| 45 | 15, 16, 44 | syl2an 289 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) →
(∃𝑦 ∈ ℝ
(((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)) |
| 46 | 45 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((𝑎 · 𝑎) + (𝑏 · 𝑏)) #ℝ 0) →
(∃𝑦 ∈ ℝ
(((𝑎 · 𝑎) + (𝑏 · 𝑏)) · 𝑦) = 1 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)) |
| 47 | 14, 46 | mpd 13 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((𝑎 · 𝑎) + (𝑏 · 𝑏)) #ℝ 0) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1) |
| 48 | 47 | ex 115 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((𝑎 · 𝑎) + (𝑏 · 𝑏)) #ℝ 0 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)) |
| 49 | 12, 48 | sylbid 150 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((𝑎 · 𝑎) + (𝑏 · 𝑏)) # 0 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)) |
| 50 | 3, 49 | syld 45 |
. . . . . . 7
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑎 + (i · 𝑏)) # 0 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)) |
| 51 | 50 | adantr 276 |
. . . . . 6
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝐴 = (𝑎 + (i · 𝑏))) → ((𝑎 + (i · 𝑏)) # 0 → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)) |
| 52 | | breq1 4036 |
. . . . . . 7
⊢ (𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 # 0 ↔ (𝑎 + (i · 𝑏)) # 0)) |
| 53 | 52 | adantl 277 |
. . . . . 6
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝐴 = (𝑎 + (i · 𝑏))) → (𝐴 # 0 ↔ (𝑎 + (i · 𝑏)) # 0)) |
| 54 | | oveq1 5929 |
. . . . . . . . 9
⊢ (𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 · 𝑥) = ((𝑎 + (i · 𝑏)) · 𝑥)) |
| 55 | 54 | eqeq1d 2205 |
. . . . . . . 8
⊢ (𝐴 = (𝑎 + (i · 𝑏)) → ((𝐴 · 𝑥) = 1 ↔ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)) |
| 56 | 55 | rexbidv 2498 |
. . . . . . 7
⊢ (𝐴 = (𝑎 + (i · 𝑏)) → (∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1 ↔ ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)) |
| 57 | 56 | adantl 277 |
. . . . . 6
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝐴 = (𝑎 + (i · 𝑏))) → (∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1 ↔ ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) · 𝑥) = 1)) |
| 58 | 51, 53, 57 | 3imtr4d 203 |
. . . . 5
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝐴 = (𝑎 + (i · 𝑏))) → (𝐴 # 0 → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)) |
| 59 | 58 | ex 115 |
. . . 4
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 # 0 → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1))) |
| 60 | 59 | rexlimivv 2620 |
. . 3
⊢
(∃𝑎 ∈
ℝ ∃𝑏 ∈
ℝ 𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 # 0 → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)) |
| 61 | 1, 60 | syl 14 |
. 2
⊢ (𝐴 ∈ ℂ → (𝐴 # 0 → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)) |
| 62 | 61 | imp 124 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1) |