ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnref1o GIF version

Theorem cnref1o 9742
Description: There is a natural one-to-one mapping from (ℝ × ℝ) to , where we map 𝑥, 𝑦 to (𝑥 + (i · 𝑦)). In our construction of the complex numbers, this is in fact our definition of (see df-c 7902), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013.) (Revised by Mario Carneiro, 17-Feb-2014.)
Hypothesis
Ref Expression
cnref1o.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
Assertion
Ref Expression
cnref1o 𝐹:(ℝ × ℝ)–1-1-onto→ℂ
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem cnref1o
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ)
21recnd 8072 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ)
3 ax-icn 7991 . . . . . . . . 9 i ∈ ℂ
43a1i 9 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → i ∈ ℂ)
5 simpr 110 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
65recnd 8072 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
74, 6mulcld 8064 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · 𝑦) ∈ ℂ)
82, 7addcld 8063 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (i · 𝑦)) ∈ ℂ)
98rgen2a 2551 . . . . 5 𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + (i · 𝑦)) ∈ ℂ
10 cnref1o.1 . . . . . 6 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
1110fnmpo 6269 . . . . 5 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + (i · 𝑦)) ∈ ℂ → 𝐹 Fn (ℝ × ℝ))
129, 11ax-mp 5 . . . 4 𝐹 Fn (ℝ × ℝ)
13 1st2nd2 6242 . . . . . . . . 9 (𝑧 ∈ (ℝ × ℝ) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
1413fveq2d 5565 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩))
15 df-ov 5928 . . . . . . . 8 ((1st𝑧)𝐹(2nd𝑧)) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩)
1614, 15eqtr4di 2247 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = ((1st𝑧)𝐹(2nd𝑧)))
17 xp1st 6232 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℝ)
18 xp2nd 6233 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (2nd𝑧) ∈ ℝ)
1917recnd 8072 . . . . . . . . 9 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℂ)
203a1i 9 . . . . . . . . . 10 (𝑧 ∈ (ℝ × ℝ) → i ∈ ℂ)
2118recnd 8072 . . . . . . . . . 10 (𝑧 ∈ (ℝ × ℝ) → (2nd𝑧) ∈ ℂ)
2220, 21mulcld 8064 . . . . . . . . 9 (𝑧 ∈ (ℝ × ℝ) → (i · (2nd𝑧)) ∈ ℂ)
2319, 22addcld 8063 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → ((1st𝑧) + (i · (2nd𝑧))) ∈ ℂ)
24 oveq1 5932 . . . . . . . . 9 (𝑥 = (1st𝑧) → (𝑥 + (i · 𝑦)) = ((1st𝑧) + (i · 𝑦)))
25 oveq2 5933 . . . . . . . . . 10 (𝑦 = (2nd𝑧) → (i · 𝑦) = (i · (2nd𝑧)))
2625oveq2d 5941 . . . . . . . . 9 (𝑦 = (2nd𝑧) → ((1st𝑧) + (i · 𝑦)) = ((1st𝑧) + (i · (2nd𝑧))))
2724, 26, 10ovmpog 6061 . . . . . . . 8 (((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ ∧ ((1st𝑧) + (i · (2nd𝑧))) ∈ ℂ) → ((1st𝑧)𝐹(2nd𝑧)) = ((1st𝑧) + (i · (2nd𝑧))))
2817, 18, 23, 27syl3anc 1249 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → ((1st𝑧)𝐹(2nd𝑧)) = ((1st𝑧) + (i · (2nd𝑧))))
2916, 28eqtrd 2229 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = ((1st𝑧) + (i · (2nd𝑧))))
3029, 23eqeltrd 2273 . . . . 5 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) ∈ ℂ)
3130rgen 2550 . . . 4 𝑧 ∈ (ℝ × ℝ)(𝐹𝑧) ∈ ℂ
32 ffnfv 5723 . . . 4 (𝐹:(ℝ × ℝ)⟶ℂ ↔ (𝐹 Fn (ℝ × ℝ) ∧ ∀𝑧 ∈ (ℝ × ℝ)(𝐹𝑧) ∈ ℂ))
3312, 31, 32mpbir2an 944 . . 3 𝐹:(ℝ × ℝ)⟶ℂ
3417, 18jca 306 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → ((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ))
35 xp1st 6232 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (1st𝑤) ∈ ℝ)
36 xp2nd 6233 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (2nd𝑤) ∈ ℝ)
3735, 36jca 306 . . . . . . 7 (𝑤 ∈ (ℝ × ℝ) → ((1st𝑤) ∈ ℝ ∧ (2nd𝑤) ∈ ℝ))
38 cru 8646 . . . . . . 7 ((((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ) ∧ ((1st𝑤) ∈ ℝ ∧ (2nd𝑤) ∈ ℝ)) → (((1st𝑧) + (i · (2nd𝑧))) = ((1st𝑤) + (i · (2nd𝑤))) ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
3934, 37, 38syl2an 289 . . . . . 6 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (((1st𝑧) + (i · (2nd𝑧))) = ((1st𝑤) + (i · (2nd𝑤))) ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
40 fveq2 5561 . . . . . . . . 9 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
41 fveq2 5561 . . . . . . . . . 10 (𝑧 = 𝑤 → (1st𝑧) = (1st𝑤))
42 fveq2 5561 . . . . . . . . . . 11 (𝑧 = 𝑤 → (2nd𝑧) = (2nd𝑤))
4342oveq2d 5941 . . . . . . . . . 10 (𝑧 = 𝑤 → (i · (2nd𝑧)) = (i · (2nd𝑤)))
4441, 43oveq12d 5943 . . . . . . . . 9 (𝑧 = 𝑤 → ((1st𝑧) + (i · (2nd𝑧))) = ((1st𝑤) + (i · (2nd𝑤))))
4540, 44eqeq12d 2211 . . . . . . . 8 (𝑧 = 𝑤 → ((𝐹𝑧) = ((1st𝑧) + (i · (2nd𝑧))) ↔ (𝐹𝑤) = ((1st𝑤) + (i · (2nd𝑤)))))
4645, 29vtoclga 2830 . . . . . . 7 (𝑤 ∈ (ℝ × ℝ) → (𝐹𝑤) = ((1st𝑤) + (i · (2nd𝑤))))
4729, 46eqeqan12d 2212 . . . . . 6 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ((1st𝑧) + (i · (2nd𝑧))) = ((1st𝑤) + (i · (2nd𝑤)))))
48 1st2nd2 6242 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
4913, 48eqeqan12d 2212 . . . . . . 7 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (𝑧 = 𝑤 ↔ ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩))
50 vex 2766 . . . . . . . . 9 𝑧 ∈ V
51 1stexg 6234 . . . . . . . . 9 (𝑧 ∈ V → (1st𝑧) ∈ V)
5250, 51ax-mp 5 . . . . . . . 8 (1st𝑧) ∈ V
53 2ndexg 6235 . . . . . . . . 9 (𝑧 ∈ V → (2nd𝑧) ∈ V)
5450, 53ax-mp 5 . . . . . . . 8 (2nd𝑧) ∈ V
5552, 54opth 4271 . . . . . . 7 (⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩ ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤)))
5649, 55bitrdi 196 . . . . . 6 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (𝑧 = 𝑤 ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
5739, 47, 563bitr4d 220 . . . . 5 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) ↔ 𝑧 = 𝑤))
5857biimpd 144 . . . 4 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
5958rgen2a 2551 . . 3 𝑧 ∈ (ℝ × ℝ)∀𝑤 ∈ (ℝ × ℝ)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)
60 dff13 5818 . . 3 (𝐹:(ℝ × ℝ)–1-1→ℂ ↔ (𝐹:(ℝ × ℝ)⟶ℂ ∧ ∀𝑧 ∈ (ℝ × ℝ)∀𝑤 ∈ (ℝ × ℝ)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
6133, 59, 60mpbir2an 944 . 2 𝐹:(ℝ × ℝ)–1-1→ℂ
62 cnre 8039 . . . . . 6 (𝑤 ∈ ℂ → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢 + (i · 𝑣)))
63 simpl 109 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑢 ∈ ℝ)
64 simpr 110 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑣 ∈ ℝ)
6563recnd 8072 . . . . . . . . . 10 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑢 ∈ ℂ)
663a1i 9 . . . . . . . . . . 11 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → i ∈ ℂ)
6764recnd 8072 . . . . . . . . . . 11 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑣 ∈ ℂ)
6866, 67mulcld 8064 . . . . . . . . . 10 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (i · 𝑣) ∈ ℂ)
6965, 68addcld 8063 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 + (i · 𝑣)) ∈ ℂ)
70 oveq1 5932 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝑥 + (i · 𝑦)) = (𝑢 + (i · 𝑦)))
71 oveq2 5933 . . . . . . . . . . 11 (𝑦 = 𝑣 → (i · 𝑦) = (i · 𝑣))
7271oveq2d 5941 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝑢 + (i · 𝑦)) = (𝑢 + (i · 𝑣)))
7370, 72, 10ovmpog 6061 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ∧ (𝑢 + (i · 𝑣)) ∈ ℂ) → (𝑢𝐹𝑣) = (𝑢 + (i · 𝑣)))
7463, 64, 69, 73syl3anc 1249 . . . . . . . 8 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢𝐹𝑣) = (𝑢 + (i · 𝑣)))
7574eqeq2d 2208 . . . . . . 7 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑤 = (𝑢𝐹𝑣) ↔ 𝑤 = (𝑢 + (i · 𝑣))))
76752rexbiia 2513 . . . . . 6 (∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢 + (i · 𝑣)))
7762, 76sylibr 134 . . . . 5 (𝑤 ∈ ℂ → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣))
78 fveq2 5561 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝐹𝑧) = (𝐹‘⟨𝑢, 𝑣⟩))
79 df-ov 5928 . . . . . . . 8 (𝑢𝐹𝑣) = (𝐹‘⟨𝑢, 𝑣⟩)
8078, 79eqtr4di 2247 . . . . . . 7 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝐹𝑧) = (𝑢𝐹𝑣))
8180eqeq2d 2208 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝑤 = (𝐹𝑧) ↔ 𝑤 = (𝑢𝐹𝑣)))
8281rexxp 4811 . . . . 5 (∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣))
8377, 82sylibr 134 . . . 4 (𝑤 ∈ ℂ → ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧))
8483rgen 2550 . . 3 𝑤 ∈ ℂ ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧)
85 dffo3 5712 . . 3 (𝐹:(ℝ × ℝ)–onto→ℂ ↔ (𝐹:(ℝ × ℝ)⟶ℂ ∧ ∀𝑤 ∈ ℂ ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧)))
8633, 84, 85mpbir2an 944 . 2 𝐹:(ℝ × ℝ)–onto→ℂ
87 df-f1o 5266 . 2 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ ↔ (𝐹:(ℝ × ℝ)–1-1→ℂ ∧ 𝐹:(ℝ × ℝ)–onto→ℂ))
8861, 86, 87mpbir2an 944 1 𝐹:(ℝ × ℝ)–1-1-onto→ℂ
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  wrex 2476  Vcvv 2763  cop 3626   × cxp 4662   Fn wfn 5254  wf 5255  1-1wf1 5256  ontowfo 5257  1-1-ontowf1o 5258  cfv 5259  (class class class)co 5925  cmpo 5927  1st c1st 6205  2nd c2nd 6206  cc 7894  cr 7895  ici 7898   + caddc 7899   · cmul 7901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-sub 8216  df-neg 8217  df-reap 8619
This theorem is referenced by:  cnrecnv  11092
  Copyright terms: Public domain W3C validator