Step | Hyp | Ref
| Expression |
1 | | simpl 108 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈
ℝ) |
2 | 1 | recnd 7948 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈
ℂ) |
3 | | ax-icn 7869 |
. . . . . . . . 9
⊢ i ∈
ℂ |
4 | 3 | a1i 9 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → i ∈
ℂ) |
5 | | simpr 109 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈
ℝ) |
6 | 5 | recnd 7948 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈
ℂ) |
7 | 4, 6 | mulcld 7940 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i
· 𝑦) ∈
ℂ) |
8 | 2, 7 | addcld 7939 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (i · 𝑦)) ∈
ℂ) |
9 | 8 | rgen2a 2524 |
. . . . 5
⊢
∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 + (i ·
𝑦)) ∈
ℂ |
10 | | cnref1o.1 |
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) |
11 | 10 | fnmpo 6181 |
. . . . 5
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 + (i ·
𝑦)) ∈ ℂ →
𝐹 Fn (ℝ ×
ℝ)) |
12 | 9, 11 | ax-mp 5 |
. . . 4
⊢ 𝐹 Fn (ℝ ×
ℝ) |
13 | | 1st2nd2 6154 |
. . . . . . . . 9
⊢ (𝑧 ∈ (ℝ ×
ℝ) → 𝑧 =
〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
14 | 13 | fveq2d 5500 |
. . . . . . . 8
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (𝐹‘𝑧) = (𝐹‘〈(1st ‘𝑧), (2nd ‘𝑧)〉)) |
15 | | df-ov 5856 |
. . . . . . . 8
⊢
((1st ‘𝑧)𝐹(2nd ‘𝑧)) = (𝐹‘〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
16 | 14, 15 | eqtr4di 2221 |
. . . . . . 7
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (𝐹‘𝑧) = ((1st ‘𝑧)𝐹(2nd ‘𝑧))) |
17 | | xp1st 6144 |
. . . . . . . 8
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (1st ‘𝑧) ∈ ℝ) |
18 | | xp2nd 6145 |
. . . . . . . 8
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (2nd ‘𝑧) ∈ ℝ) |
19 | 17 | recnd 7948 |
. . . . . . . . 9
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (1st ‘𝑧) ∈ ℂ) |
20 | 3 | a1i 9 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (ℝ ×
ℝ) → i ∈ ℂ) |
21 | 18 | recnd 7948 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (2nd ‘𝑧) ∈ ℂ) |
22 | 20, 21 | mulcld 7940 |
. . . . . . . . 9
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (i · (2nd ‘𝑧)) ∈ ℂ) |
23 | 19, 22 | addcld 7939 |
. . . . . . . 8
⊢ (𝑧 ∈ (ℝ ×
ℝ) → ((1st ‘𝑧) + (i · (2nd ‘𝑧))) ∈
ℂ) |
24 | | oveq1 5860 |
. . . . . . . . 9
⊢ (𝑥 = (1st ‘𝑧) → (𝑥 + (i · 𝑦)) = ((1st ‘𝑧) + (i · 𝑦))) |
25 | | oveq2 5861 |
. . . . . . . . . 10
⊢ (𝑦 = (2nd ‘𝑧) → (i · 𝑦) = (i · (2nd
‘𝑧))) |
26 | 25 | oveq2d 5869 |
. . . . . . . . 9
⊢ (𝑦 = (2nd ‘𝑧) → ((1st
‘𝑧) + (i ·
𝑦)) = ((1st
‘𝑧) + (i ·
(2nd ‘𝑧)))) |
27 | 24, 26, 10 | ovmpog 5987 |
. . . . . . . 8
⊢
(((1st ‘𝑧) ∈ ℝ ∧ (2nd
‘𝑧) ∈ ℝ
∧ ((1st ‘𝑧) + (i · (2nd ‘𝑧))) ∈ ℂ) →
((1st ‘𝑧)𝐹(2nd ‘𝑧)) = ((1st ‘𝑧) + (i · (2nd
‘𝑧)))) |
28 | 17, 18, 23, 27 | syl3anc 1233 |
. . . . . . 7
⊢ (𝑧 ∈ (ℝ ×
ℝ) → ((1st ‘𝑧)𝐹(2nd ‘𝑧)) = ((1st ‘𝑧) + (i · (2nd
‘𝑧)))) |
29 | 16, 28 | eqtrd 2203 |
. . . . . 6
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (𝐹‘𝑧) = ((1st ‘𝑧) + (i · (2nd
‘𝑧)))) |
30 | 29, 23 | eqeltrd 2247 |
. . . . 5
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (𝐹‘𝑧) ∈ ℂ) |
31 | 30 | rgen 2523 |
. . . 4
⊢
∀𝑧 ∈
(ℝ × ℝ)(𝐹‘𝑧) ∈ ℂ |
32 | | ffnfv 5654 |
. . . 4
⊢ (𝐹:(ℝ ×
ℝ)⟶ℂ ↔ (𝐹 Fn (ℝ × ℝ) ∧
∀𝑧 ∈ (ℝ
× ℝ)(𝐹‘𝑧) ∈ ℂ)) |
33 | 12, 31, 32 | mpbir2an 937 |
. . 3
⊢ 𝐹:(ℝ ×
ℝ)⟶ℂ |
34 | 17, 18 | jca 304 |
. . . . . . 7
⊢ (𝑧 ∈ (ℝ ×
ℝ) → ((1st ‘𝑧) ∈ ℝ ∧ (2nd
‘𝑧) ∈
ℝ)) |
35 | | xp1st 6144 |
. . . . . . . 8
⊢ (𝑤 ∈ (ℝ ×
ℝ) → (1st ‘𝑤) ∈ ℝ) |
36 | | xp2nd 6145 |
. . . . . . . 8
⊢ (𝑤 ∈ (ℝ ×
ℝ) → (2nd ‘𝑤) ∈ ℝ) |
37 | 35, 36 | jca 304 |
. . . . . . 7
⊢ (𝑤 ∈ (ℝ ×
ℝ) → ((1st ‘𝑤) ∈ ℝ ∧ (2nd
‘𝑤) ∈
ℝ)) |
38 | | cru 8521 |
. . . . . . 7
⊢
((((1st ‘𝑧) ∈ ℝ ∧ (2nd
‘𝑧) ∈ ℝ)
∧ ((1st ‘𝑤) ∈ ℝ ∧ (2nd
‘𝑤) ∈ ℝ))
→ (((1st ‘𝑧) + (i · (2nd ‘𝑧))) = ((1st
‘𝑤) + (i ·
(2nd ‘𝑤)))
↔ ((1st ‘𝑧) = (1st ‘𝑤) ∧ (2nd ‘𝑧) = (2nd ‘𝑤)))) |
39 | 34, 37, 38 | syl2an 287 |
. . . . . 6
⊢ ((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → (((1st ‘𝑧) + (i · (2nd ‘𝑧))) = ((1st
‘𝑤) + (i ·
(2nd ‘𝑤)))
↔ ((1st ‘𝑧) = (1st ‘𝑤) ∧ (2nd ‘𝑧) = (2nd ‘𝑤)))) |
40 | | fveq2 5496 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝐹‘𝑧) = (𝐹‘𝑤)) |
41 | | fveq2 5496 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (1st ‘𝑧) = (1st ‘𝑤)) |
42 | | fveq2 5496 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑤 → (2nd ‘𝑧) = (2nd ‘𝑤)) |
43 | 42 | oveq2d 5869 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (i · (2nd
‘𝑧)) = (i ·
(2nd ‘𝑤))) |
44 | 41, 43 | oveq12d 5871 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → ((1st ‘𝑧) + (i · (2nd
‘𝑧))) =
((1st ‘𝑤)
+ (i · (2nd ‘𝑤)))) |
45 | 40, 44 | eqeq12d 2185 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → ((𝐹‘𝑧) = ((1st ‘𝑧) + (i · (2nd
‘𝑧))) ↔ (𝐹‘𝑤) = ((1st ‘𝑤) + (i · (2nd
‘𝑤))))) |
46 | 45, 29 | vtoclga 2796 |
. . . . . . 7
⊢ (𝑤 ∈ (ℝ ×
ℝ) → (𝐹‘𝑤) = ((1st ‘𝑤) + (i · (2nd
‘𝑤)))) |
47 | 29, 46 | eqeqan12d 2186 |
. . . . . 6
⊢ ((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ((1st ‘𝑧) + (i · (2nd
‘𝑧))) =
((1st ‘𝑤)
+ (i · (2nd ‘𝑤))))) |
48 | | 1st2nd2 6154 |
. . . . . . . 8
⊢ (𝑤 ∈ (ℝ ×
ℝ) → 𝑤 =
〈(1st ‘𝑤), (2nd ‘𝑤)〉) |
49 | 13, 48 | eqeqan12d 2186 |
. . . . . . 7
⊢ ((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → (𝑧 = 𝑤 ↔ 〈(1st ‘𝑧), (2nd ‘𝑧)〉 = 〈(1st
‘𝑤), (2nd
‘𝑤)〉)) |
50 | | vex 2733 |
. . . . . . . . 9
⊢ 𝑧 ∈ V |
51 | | 1stexg 6146 |
. . . . . . . . 9
⊢ (𝑧 ∈ V → (1st
‘𝑧) ∈
V) |
52 | 50, 51 | ax-mp 5 |
. . . . . . . 8
⊢
(1st ‘𝑧) ∈ V |
53 | | 2ndexg 6147 |
. . . . . . . . 9
⊢ (𝑧 ∈ V → (2nd
‘𝑧) ∈
V) |
54 | 50, 53 | ax-mp 5 |
. . . . . . . 8
⊢
(2nd ‘𝑧) ∈ V |
55 | 52, 54 | opth 4222 |
. . . . . . 7
⊢
(〈(1st ‘𝑧), (2nd ‘𝑧)〉 = 〈(1st ‘𝑤), (2nd ‘𝑤)〉 ↔ ((1st
‘𝑧) = (1st
‘𝑤) ∧
(2nd ‘𝑧) =
(2nd ‘𝑤))) |
56 | 49, 55 | bitrdi 195 |
. . . . . 6
⊢ ((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → (𝑧 = 𝑤 ↔ ((1st ‘𝑧) = (1st ‘𝑤) ∧ (2nd
‘𝑧) = (2nd
‘𝑤)))) |
57 | 39, 47, 56 | 3bitr4d 219 |
. . . . 5
⊢ ((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ 𝑧 = 𝑤)) |
58 | 57 | biimpd 143 |
. . . 4
⊢ ((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
59 | 58 | rgen2a 2524 |
. . 3
⊢
∀𝑧 ∈
(ℝ × ℝ)∀𝑤 ∈ (ℝ × ℝ)((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤) |
60 | | dff13 5747 |
. . 3
⊢ (𝐹:(ℝ ×
ℝ)–1-1→ℂ ↔
(𝐹:(ℝ ×
ℝ)⟶ℂ ∧ ∀𝑧 ∈ (ℝ ×
ℝ)∀𝑤 ∈
(ℝ × ℝ)((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) |
61 | 33, 59, 60 | mpbir2an 937 |
. 2
⊢ 𝐹:(ℝ ×
ℝ)–1-1→ℂ |
62 | | cnre 7916 |
. . . . . 6
⊢ (𝑤 ∈ ℂ →
∃𝑢 ∈ ℝ
∃𝑣 ∈ ℝ
𝑤 = (𝑢 + (i · 𝑣))) |
63 | | simpl 108 |
. . . . . . . . 9
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑢 ∈
ℝ) |
64 | | simpr 109 |
. . . . . . . . 9
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑣 ∈
ℝ) |
65 | 63 | recnd 7948 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑢 ∈
ℂ) |
66 | 3 | a1i 9 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → i ∈
ℂ) |
67 | 64 | recnd 7948 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑣 ∈
ℂ) |
68 | 66, 67 | mulcld 7940 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (i
· 𝑣) ∈
ℂ) |
69 | 65, 68 | addcld 7939 |
. . . . . . . . 9
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 + (i · 𝑣)) ∈
ℂ) |
70 | | oveq1 5860 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑢 → (𝑥 + (i · 𝑦)) = (𝑢 + (i · 𝑦))) |
71 | | oveq2 5861 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑣 → (i · 𝑦) = (i · 𝑣)) |
72 | 71 | oveq2d 5869 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑣 → (𝑢 + (i · 𝑦)) = (𝑢 + (i · 𝑣))) |
73 | 70, 72, 10 | ovmpog 5987 |
. . . . . . . . 9
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ∧ (𝑢 + (i · 𝑣)) ∈ ℂ) → (𝑢𝐹𝑣) = (𝑢 + (i · 𝑣))) |
74 | 63, 64, 69, 73 | syl3anc 1233 |
. . . . . . . 8
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢𝐹𝑣) = (𝑢 + (i · 𝑣))) |
75 | 74 | eqeq2d 2182 |
. . . . . . 7
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑤 = (𝑢𝐹𝑣) ↔ 𝑤 = (𝑢 + (i · 𝑣)))) |
76 | 75 | 2rexbiia 2486 |
. . . . . 6
⊢
(∃𝑢 ∈
ℝ ∃𝑣 ∈
ℝ 𝑤 = (𝑢𝐹𝑣) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢 + (i · 𝑣))) |
77 | 62, 76 | sylibr 133 |
. . . . 5
⊢ (𝑤 ∈ ℂ →
∃𝑢 ∈ ℝ
∃𝑣 ∈ ℝ
𝑤 = (𝑢𝐹𝑣)) |
78 | | fveq2 5496 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑢, 𝑣〉 → (𝐹‘𝑧) = (𝐹‘〈𝑢, 𝑣〉)) |
79 | | df-ov 5856 |
. . . . . . . 8
⊢ (𝑢𝐹𝑣) = (𝐹‘〈𝑢, 𝑣〉) |
80 | 78, 79 | eqtr4di 2221 |
. . . . . . 7
⊢ (𝑧 = 〈𝑢, 𝑣〉 → (𝐹‘𝑧) = (𝑢𝐹𝑣)) |
81 | 80 | eqeq2d 2182 |
. . . . . 6
⊢ (𝑧 = 〈𝑢, 𝑣〉 → (𝑤 = (𝐹‘𝑧) ↔ 𝑤 = (𝑢𝐹𝑣))) |
82 | 81 | rexxp 4755 |
. . . . 5
⊢
(∃𝑧 ∈
(ℝ × ℝ)𝑤
= (𝐹‘𝑧) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣)) |
83 | 77, 82 | sylibr 133 |
. . . 4
⊢ (𝑤 ∈ ℂ →
∃𝑧 ∈ (ℝ
× ℝ)𝑤 = (𝐹‘𝑧)) |
84 | 83 | rgen 2523 |
. . 3
⊢
∀𝑤 ∈
ℂ ∃𝑧 ∈
(ℝ × ℝ)𝑤
= (𝐹‘𝑧) |
85 | | dffo3 5643 |
. . 3
⊢ (𝐹:(ℝ ×
ℝ)–onto→ℂ ↔
(𝐹:(ℝ ×
ℝ)⟶ℂ ∧ ∀𝑤 ∈ ℂ ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹‘𝑧))) |
86 | 33, 84, 85 | mpbir2an 937 |
. 2
⊢ 𝐹:(ℝ ×
ℝ)–onto→ℂ |
87 | | df-f1o 5205 |
. 2
⊢ (𝐹:(ℝ ×
ℝ)–1-1-onto→ℂ ↔ (𝐹:(ℝ × ℝ)–1-1→ℂ ∧ 𝐹:(ℝ × ℝ)–onto→ℂ)) |
88 | 61, 86, 87 | mpbir2an 937 |
1
⊢ 𝐹:(ℝ ×
ℝ)–1-1-onto→ℂ |