ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apadd1 GIF version

Theorem apadd1 8652
Description: Addition respects apartness. Analogue of addcan 8223 for apartness. (Contributed by Jim Kingdon, 13-Feb-2020.)
Assertion
Ref Expression
apadd1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶)))

Proof of Theorem apadd1
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 8039 . . 3 (𝐶 ∈ ℂ → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝐶 = (𝑢 + (i · 𝑣)))
213ad2ant3 1022 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝐶 = (𝑢 + (i · 𝑣)))
3 cnre 8039 . . . . . . 7 (𝐵 ∈ ℂ → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)))
433ad2ant2 1021 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)))
54ad2antrr 488 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)))
6 cnre 8039 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
763ad2ant1 1020 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
87ad2antrr 488 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
98ad2antrr 488 . . . . . . . 8 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
10 simplrl 535 . . . . . . . . . . . 12 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑥 ∈ ℝ)
11 simplrr 536 . . . . . . . . . . . 12 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑦 ∈ ℝ)
12 simprl 529 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑧 ∈ ℝ)
1312ad3antrrr 492 . . . . . . . . . . . 12 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑧 ∈ ℝ)
14 simprr 531 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑤 ∈ ℝ)
1514ad3antrrr 492 . . . . . . . . . . . 12 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑤 ∈ ℝ)
16 apreim 8647 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤)) ↔ (𝑥 # 𝑧𝑦 # 𝑤)))
1710, 11, 13, 15, 16syl22anc 1250 . . . . . . . . . . 11 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤)) ↔ (𝑥 # 𝑧𝑦 # 𝑤)))
18 simpr 110 . . . . . . . . . . . 12 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐴 = (𝑥 + (i · 𝑦)))
19 simpllr 534 . . . . . . . . . . . 12 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐵 = (𝑧 + (i · 𝑤)))
2018, 19breq12d 4047 . . . . . . . . . . 11 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐵 ↔ (𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤))))
21 simprl 529 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → 𝑢 ∈ ℝ)
2221ad2antrr 488 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑢 ∈ ℝ)
2322ad3antrrr 492 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑢 ∈ ℝ)
2410, 23readdcld 8073 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑥 + 𝑢) ∈ ℝ)
25 simprr 531 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → 𝑣 ∈ ℝ)
2625ad2antrr 488 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑣 ∈ ℝ)
2726ad3antrrr 492 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑣 ∈ ℝ)
2811, 27readdcld 8073 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑦 + 𝑣) ∈ ℝ)
2913, 23readdcld 8073 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑧 + 𝑢) ∈ ℝ)
3015, 27readdcld 8073 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑤 + 𝑣) ∈ ℝ)
31 apreim 8647 . . . . . . . . . . . . 13 ((((𝑥 + 𝑢) ∈ ℝ ∧ (𝑦 + 𝑣) ∈ ℝ) ∧ ((𝑧 + 𝑢) ∈ ℝ ∧ (𝑤 + 𝑣) ∈ ℝ)) → (((𝑥 + 𝑢) + (i · (𝑦 + 𝑣))) # ((𝑧 + 𝑢) + (i · (𝑤 + 𝑣))) ↔ ((𝑥 + 𝑢) # (𝑧 + 𝑢) ∨ (𝑦 + 𝑣) # (𝑤 + 𝑣))))
3224, 28, 29, 30, 31syl22anc 1250 . . . . . . . . . . . 12 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (((𝑥 + 𝑢) + (i · (𝑦 + 𝑣))) # ((𝑧 + 𝑢) + (i · (𝑤 + 𝑣))) ↔ ((𝑥 + 𝑢) # (𝑧 + 𝑢) ∨ (𝑦 + 𝑣) # (𝑤 + 𝑣))))
3310recnd 8072 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑥 ∈ ℂ)
34 ax-icn 7991 . . . . . . . . . . . . . . . . 17 i ∈ ℂ
3534a1i 9 . . . . . . . . . . . . . . . 16 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → i ∈ ℂ)
3611recnd 8072 . . . . . . . . . . . . . . . 16 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑦 ∈ ℂ)
3735, 36mulcld 8064 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (i · 𝑦) ∈ ℂ)
3823recnd 8072 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑢 ∈ ℂ)
3927recnd 8072 . . . . . . . . . . . . . . . 16 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑣 ∈ ℂ)
4035, 39mulcld 8064 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (i · 𝑣) ∈ ℂ)
4133, 37, 38, 40add4d 8212 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 + (i · 𝑦)) + (𝑢 + (i · 𝑣))) = ((𝑥 + 𝑢) + ((i · 𝑦) + (i · 𝑣))))
42 simplr 528 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝐶 = (𝑢 + (i · 𝑣)))
4342ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐶 = (𝑢 + (i · 𝑣)))
4418, 43oveq12d 5943 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 + 𝐶) = ((𝑥 + (i · 𝑦)) + (𝑢 + (i · 𝑣))))
4535, 36, 39adddid 8068 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (i · (𝑦 + 𝑣)) = ((i · 𝑦) + (i · 𝑣)))
4645oveq2d 5941 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 + 𝑢) + (i · (𝑦 + 𝑣))) = ((𝑥 + 𝑢) + ((i · 𝑦) + (i · 𝑣))))
4741, 44, 463eqtr4d 2239 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 + 𝐶) = ((𝑥 + 𝑢) + (i · (𝑦 + 𝑣))))
4813recnd 8072 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑧 ∈ ℂ)
4915recnd 8072 . . . . . . . . . . . . . . . 16 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑤 ∈ ℂ)
5035, 49mulcld 8064 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (i · 𝑤) ∈ ℂ)
5148, 50, 38, 40add4d 8212 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑧 + (i · 𝑤)) + (𝑢 + (i · 𝑣))) = ((𝑧 + 𝑢) + ((i · 𝑤) + (i · 𝑣))))
5219, 43oveq12d 5943 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐵 + 𝐶) = ((𝑧 + (i · 𝑤)) + (𝑢 + (i · 𝑣))))
5335, 49, 39adddid 8068 . . . . . . . . . . . . . . 15 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (i · (𝑤 + 𝑣)) = ((i · 𝑤) + (i · 𝑣)))
5453oveq2d 5941 . . . . . . . . . . . . . 14 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑧 + 𝑢) + (i · (𝑤 + 𝑣))) = ((𝑧 + 𝑢) + ((i · 𝑤) + (i · 𝑣))))
5551, 52, 543eqtr4d 2239 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐵 + 𝐶) = ((𝑧 + 𝑢) + (i · (𝑤 + 𝑣))))
5647, 55breq12d 4047 . . . . . . . . . . . 12 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝐴 + 𝐶) # (𝐵 + 𝐶) ↔ ((𝑥 + 𝑢) + (i · (𝑦 + 𝑣))) # ((𝑧 + 𝑢) + (i · (𝑤 + 𝑣)))))
57 reapadd1 8640 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑥 # 𝑧 ↔ (𝑥 + 𝑢) # (𝑧 + 𝑢)))
5810, 13, 23, 57syl3anc 1249 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑥 # 𝑧 ↔ (𝑥 + 𝑢) # (𝑧 + 𝑢)))
59 reapadd1 8640 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑦 # 𝑤 ↔ (𝑦 + 𝑣) # (𝑤 + 𝑣)))
6011, 15, 27, 59syl3anc 1249 . . . . . . . . . . . . 13 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑦 # 𝑤 ↔ (𝑦 + 𝑣) # (𝑤 + 𝑣)))
6158, 60orbi12d 794 . . . . . . . . . . . 12 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 # 𝑧𝑦 # 𝑤) ↔ ((𝑥 + 𝑢) # (𝑧 + 𝑢) ∨ (𝑦 + 𝑣) # (𝑤 + 𝑣))))
6232, 56, 613bitr4d 220 . . . . . . . . . . 11 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝐴 + 𝐶) # (𝐵 + 𝐶) ↔ (𝑥 # 𝑧𝑦 # 𝑤)))
6317, 20, 623bitr4d 220 . . . . . . . . . 10 ((((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶)))
6463ex 115 . . . . . . . . 9 (((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶))))
6564rexlimdvva 2622 . . . . . . . 8 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶))))
669, 65mpd 13 . . . . . . 7 ((((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶)))
6766ex 115 . . . . . 6 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → (𝐵 = (𝑧 + (i · 𝑤)) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶))))
6867rexlimdvva 2622 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) → (∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶))))
695, 68mpd 13 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶)))
7069ex 115 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝐶 = (𝑢 + (i · 𝑣)) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶))))
7170rexlimdvva 2622 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝐶 = (𝑢 + (i · 𝑣)) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶))))
722, 71mpd 13 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2167  wrex 2476   class class class wbr 4034  (class class class)co 5925  cc 7894  cr 7895  ici 7898   + caddc 7899   · cmul 7901   # cap 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626
This theorem is referenced by:  apadd2  8653  addext  8654  apsub1  8686  subap0  8687
  Copyright terms: Public domain W3C validator