| Step | Hyp | Ref
| Expression |
| 1 | | cnre 8022 |
. . 3
⊢ (𝐶 ∈ ℂ →
∃𝑢 ∈ ℝ
∃𝑣 ∈ ℝ
𝐶 = (𝑢 + (i · 𝑣))) |
| 2 | 1 | 3ad2ant3 1022 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) →
∃𝑢 ∈ ℝ
∃𝑣 ∈ ℝ
𝐶 = (𝑢 + (i · 𝑣))) |
| 3 | | cnre 8022 |
. . . . . . 7
⊢ (𝐵 ∈ ℂ →
∃𝑧 ∈ ℝ
∃𝑤 ∈ ℝ
𝐵 = (𝑧 + (i · 𝑤))) |
| 4 | 3 | 3ad2ant2 1021 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) →
∃𝑧 ∈ ℝ
∃𝑤 ∈ ℝ
𝐵 = (𝑧 + (i · 𝑤))) |
| 5 | 4 | ad2antrr 488 |
. . . . 5
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤))) |
| 6 | | cnre 8022 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ →
∃𝑥 ∈ ℝ
∃𝑦 ∈ ℝ
𝐴 = (𝑥 + (i · 𝑦))) |
| 7 | 6 | 3ad2ant1 1020 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) →
∃𝑥 ∈ ℝ
∃𝑦 ∈ ℝ
𝐴 = (𝑥 + (i · 𝑦))) |
| 8 | 7 | ad2antrr 488 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
| 9 | 8 | ad2antrr 488 |
. . . . . . . 8
⊢
((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
| 10 | | simplrl 535 |
. . . . . . . . . . . 12
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑥 ∈ ℝ) |
| 11 | | simplrr 536 |
. . . . . . . . . . . 12
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑦 ∈ ℝ) |
| 12 | | simprl 529 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑧 ∈ ℝ) |
| 13 | 12 | ad3antrrr 492 |
. . . . . . . . . . . 12
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑧 ∈ ℝ) |
| 14 | | simprr 531 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑤 ∈ ℝ) |
| 15 | 14 | ad3antrrr 492 |
. . . . . . . . . . . 12
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑤 ∈ ℝ) |
| 16 | | apreim 8630 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤)) ↔ (𝑥 # 𝑧 ∨ 𝑦 # 𝑤))) |
| 17 | 10, 11, 13, 15, 16 | syl22anc 1250 |
. . . . . . . . . . 11
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤)) ↔ (𝑥 # 𝑧 ∨ 𝑦 # 𝑤))) |
| 18 | | simpr 110 |
. . . . . . . . . . . 12
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐴 = (𝑥 + (i · 𝑦))) |
| 19 | | simpllr 534 |
. . . . . . . . . . . 12
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐵 = (𝑧 + (i · 𝑤))) |
| 20 | 18, 19 | breq12d 4046 |
. . . . . . . . . . 11
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐵 ↔ (𝑥 + (i · 𝑦)) # (𝑧 + (i · 𝑤)))) |
| 21 | | simprl 529 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → 𝑢 ∈
ℝ) |
| 22 | 21 | ad2antrr 488 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑢 ∈ ℝ) |
| 23 | 22 | ad3antrrr 492 |
. . . . . . . . . . . . . 14
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑢 ∈ ℝ) |
| 24 | 10, 23 | readdcld 8056 |
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑥 + 𝑢) ∈ ℝ) |
| 25 | | simprr 531 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → 𝑣 ∈
ℝ) |
| 26 | 25 | ad2antrr 488 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝑣 ∈ ℝ) |
| 27 | 26 | ad3antrrr 492 |
. . . . . . . . . . . . . 14
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑣 ∈ ℝ) |
| 28 | 11, 27 | readdcld 8056 |
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑦 + 𝑣) ∈ ℝ) |
| 29 | 13, 23 | readdcld 8056 |
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑧 + 𝑢) ∈ ℝ) |
| 30 | 15, 27 | readdcld 8056 |
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑤 + 𝑣) ∈ ℝ) |
| 31 | | apreim 8630 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 + 𝑢) ∈ ℝ ∧ (𝑦 + 𝑣) ∈ ℝ) ∧ ((𝑧 + 𝑢) ∈ ℝ ∧ (𝑤 + 𝑣) ∈ ℝ)) → (((𝑥 + 𝑢) + (i · (𝑦 + 𝑣))) # ((𝑧 + 𝑢) + (i · (𝑤 + 𝑣))) ↔ ((𝑥 + 𝑢) # (𝑧 + 𝑢) ∨ (𝑦 + 𝑣) # (𝑤 + 𝑣)))) |
| 32 | 24, 28, 29, 30, 31 | syl22anc 1250 |
. . . . . . . . . . . 12
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (((𝑥 + 𝑢) + (i · (𝑦 + 𝑣))) # ((𝑧 + 𝑢) + (i · (𝑤 + 𝑣))) ↔ ((𝑥 + 𝑢) # (𝑧 + 𝑢) ∨ (𝑦 + 𝑣) # (𝑤 + 𝑣)))) |
| 33 | 10 | recnd 8055 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑥 ∈ ℂ) |
| 34 | | ax-icn 7974 |
. . . . . . . . . . . . . . . . 17
⊢ i ∈
ℂ |
| 35 | 34 | a1i 9 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → i ∈ ℂ) |
| 36 | 11 | recnd 8055 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑦 ∈ ℂ) |
| 37 | 35, 36 | mulcld 8047 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (i · 𝑦) ∈ ℂ) |
| 38 | 23 | recnd 8055 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑢 ∈ ℂ) |
| 39 | 27 | recnd 8055 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑣 ∈ ℂ) |
| 40 | 35, 39 | mulcld 8047 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (i · 𝑣) ∈ ℂ) |
| 41 | 33, 37, 38, 40 | add4d 8195 |
. . . . . . . . . . . . . 14
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 + (i · 𝑦)) + (𝑢 + (i · 𝑣))) = ((𝑥 + 𝑢) + ((i · 𝑦) + (i · 𝑣)))) |
| 42 | | simplr 528 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → 𝐶 = (𝑢 + (i · 𝑣))) |
| 43 | 42 | ad3antrrr 492 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐶 = (𝑢 + (i · 𝑣))) |
| 44 | 18, 43 | oveq12d 5940 |
. . . . . . . . . . . . . 14
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 + 𝐶) = ((𝑥 + (i · 𝑦)) + (𝑢 + (i · 𝑣)))) |
| 45 | 35, 36, 39 | adddid 8051 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (i · (𝑦 + 𝑣)) = ((i · 𝑦) + (i · 𝑣))) |
| 46 | 45 | oveq2d 5938 |
. . . . . . . . . . . . . 14
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 + 𝑢) + (i · (𝑦 + 𝑣))) = ((𝑥 + 𝑢) + ((i · 𝑦) + (i · 𝑣)))) |
| 47 | 41, 44, 46 | 3eqtr4d 2239 |
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 + 𝐶) = ((𝑥 + 𝑢) + (i · (𝑦 + 𝑣)))) |
| 48 | 13 | recnd 8055 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑧 ∈ ℂ) |
| 49 | 15 | recnd 8055 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑤 ∈ ℂ) |
| 50 | 35, 49 | mulcld 8047 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (i · 𝑤) ∈ ℂ) |
| 51 | 48, 50, 38, 40 | add4d 8195 |
. . . . . . . . . . . . . 14
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑧 + (i · 𝑤)) + (𝑢 + (i · 𝑣))) = ((𝑧 + 𝑢) + ((i · 𝑤) + (i · 𝑣)))) |
| 52 | 19, 43 | oveq12d 5940 |
. . . . . . . . . . . . . 14
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐵 + 𝐶) = ((𝑧 + (i · 𝑤)) + (𝑢 + (i · 𝑣)))) |
| 53 | 35, 49, 39 | adddid 8051 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (i · (𝑤 + 𝑣)) = ((i · 𝑤) + (i · 𝑣))) |
| 54 | 53 | oveq2d 5938 |
. . . . . . . . . . . . . 14
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑧 + 𝑢) + (i · (𝑤 + 𝑣))) = ((𝑧 + 𝑢) + ((i · 𝑤) + (i · 𝑣)))) |
| 55 | 51, 52, 54 | 3eqtr4d 2239 |
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐵 + 𝐶) = ((𝑧 + 𝑢) + (i · (𝑤 + 𝑣)))) |
| 56 | 47, 55 | breq12d 4046 |
. . . . . . . . . . . 12
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝐴 + 𝐶) # (𝐵 + 𝐶) ↔ ((𝑥 + 𝑢) + (i · (𝑦 + 𝑣))) # ((𝑧 + 𝑢) + (i · (𝑤 + 𝑣))))) |
| 57 | | reapadd1 8623 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑥 # 𝑧 ↔ (𝑥 + 𝑢) # (𝑧 + 𝑢))) |
| 58 | 10, 13, 23, 57 | syl3anc 1249 |
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑥 # 𝑧 ↔ (𝑥 + 𝑢) # (𝑧 + 𝑢))) |
| 59 | | reapadd1 8623 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑦 # 𝑤 ↔ (𝑦 + 𝑣) # (𝑤 + 𝑣))) |
| 60 | 11, 15, 27, 59 | syl3anc 1249 |
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝑦 # 𝑤 ↔ (𝑦 + 𝑣) # (𝑤 + 𝑣))) |
| 61 | 58, 60 | orbi12d 794 |
. . . . . . . . . . . 12
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝑥 # 𝑧 ∨ 𝑦 # 𝑤) ↔ ((𝑥 + 𝑢) # (𝑧 + 𝑢) ∨ (𝑦 + 𝑣) # (𝑤 + 𝑣)))) |
| 62 | 32, 56, 61 | 3bitr4d 220 |
. . . . . . . . . . 11
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((𝐴 + 𝐶) # (𝐵 + 𝐶) ↔ (𝑥 # 𝑧 ∨ 𝑦 # 𝑤))) |
| 63 | 17, 20, 62 | 3bitr4d 220 |
. . . . . . . . . 10
⊢
((((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶))) |
| 64 | 63 | ex 115 |
. . . . . . . . 9
⊢
(((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶)))) |
| 65 | 64 | rexlimdvva 2622 |
. . . . . . . 8
⊢
((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶)))) |
| 66 | 9, 65 | mpd 13 |
. . . . . . 7
⊢
((((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) ∧ 𝐵 = (𝑧 + (i · 𝑤))) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶))) |
| 67 | 66 | ex 115 |
. . . . . 6
⊢
(((((𝐴 ∈
ℂ ∧ 𝐵 ∈
ℂ ∧ 𝐶 ∈
ℂ) ∧ (𝑢 ∈
ℝ ∧ 𝑣 ∈
ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → (𝐵 = (𝑧 + (i · 𝑤)) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶)))) |
| 68 | 67 | rexlimdvva 2622 |
. . . . 5
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) → (∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐵 = (𝑧 + (i · 𝑤)) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶)))) |
| 69 | 5, 68 | mpd 13 |
. . . 4
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) ∧ 𝐶 = (𝑢 + (i · 𝑣))) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶))) |
| 70 | 69 | ex 115 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝐶 = (𝑢 + (i · 𝑣)) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶)))) |
| 71 | 70 | rexlimdvva 2622 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) →
(∃𝑢 ∈ ℝ
∃𝑣 ∈ ℝ
𝐶 = (𝑢 + (i · 𝑣)) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶)))) |
| 72 | 2, 71 | mpd 13 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶))) |