ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1ex GIF version

Theorem 1ex 8040
Description: 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
1ex 1 ∈ V

Proof of Theorem 1ex
StepHypRef Expression
1 ax-1cn 7991 . 2 1 ∈ ℂ
21elexi 2775 1 1 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2167  Vcvv 2763  cc 7896  1c1 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178  ax-1cn 7991
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765
This theorem is referenced by:  nn1suc  9028  nn0ind-raph  9462  fzprval  10176  fztpval  10177  m1expcl2  10672  1exp  10679  facnn  10838  fac0  10839  prhash2ex  10920  prodf1f  11727  fprodntrivap  11768  prod1dc  11770  fprodssdc  11774  ege2le3  11855  1nprm  12309  pcmpt  12539  dvexp  15055  dvef  15071  lgsdir2lem3  15379  2o01f  15749  iswomni0  15808
  Copyright terms: Public domain W3C validator