![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1ex | GIF version |
Description: 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
1ex | ⊢ 1 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7933 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | elexi 2764 | 1 ⊢ 1 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 Vcvv 2752 ℂcc 7838 1c1 7841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2171 ax-1cn 7933 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-v 2754 |
This theorem is referenced by: nn1suc 8967 nn0ind-raph 9399 fzprval 10111 fztpval 10112 m1expcl2 10572 1exp 10579 facnn 10738 fac0 10739 prhash2ex 10820 prodf1f 11582 fprodntrivap 11623 prod1dc 11625 fprodssdc 11629 ege2le3 11710 1nprm 12145 pcmpt 12374 dvexp 14627 dvef 14640 lgsdir2lem3 14884 2o01f 15200 iswomni0 15253 |
Copyright terms: Public domain | W3C validator |