| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1ex | GIF version | ||
| Description: 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1ex | ⊢ 1 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 7991 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | elexi 2775 | 1 ⊢ 1 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ℂcc 7896 1c1 7899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 ax-1cn 7991 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: nn1suc 9028 nn0ind-raph 9462 fzprval 10176 fztpval 10177 m1expcl2 10672 1exp 10679 facnn 10838 fac0 10839 prhash2ex 10920 prodf1f 11727 fprodntrivap 11768 prod1dc 11770 fprodssdc 11774 ege2le3 11855 1nprm 12309 pcmpt 12539 dvexp 15055 dvef 15071 lgsdir2lem3 15379 2o01f 15749 iswomni0 15808 |
| Copyright terms: Public domain | W3C validator |