ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1ex GIF version

Theorem 1ex 7679
Description: 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
1ex 1 ∈ V

Proof of Theorem 1ex
StepHypRef Expression
1 ax-1cn 7632 . 2 1 ∈ ℂ
21elexi 2667 1 1 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 1461  Vcvv 2655  cc 7539  1c1 7542
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1404  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-ext 2095  ax-1cn 7632
This theorem depends on definitions:  df-bi 116  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-v 2657
This theorem is referenced by:  nn1suc  8643  nn0ind-raph  9066  fzprval  9749  fztpval  9750  m1expcl2  10202  1exp  10209  facnn  10360  fac0  10361  prhash2ex  10442  ege2le3  11222  1nprm  11635  isomninnlem  12906
  Copyright terms: Public domain W3C validator