| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1ex | GIF version | ||
| Description: 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1ex | ⊢ 1 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 7989 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | elexi 2775 | 1 ⊢ 1 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ℂcc 7894 1c1 7897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 ax-1cn 7989 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: nn1suc 9026 nn0ind-raph 9460 fzprval 10174 fztpval 10175 m1expcl2 10670 1exp 10677 facnn 10836 fac0 10837 prhash2ex 10918 prodf1f 11725 fprodntrivap 11766 prod1dc 11768 fprodssdc 11772 ege2le3 11853 1nprm 12307 pcmpt 12537 dvexp 15031 dvef 15047 lgsdir2lem3 15355 2o01f 15725 iswomni0 15782 |
| Copyright terms: Public domain | W3C validator |