ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1ex GIF version

Theorem 1ex 8137
Description: 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
1ex 1 ∈ V

Proof of Theorem 1ex
StepHypRef Expression
1 ax-1cn 8088 . 2 1 ∈ ℂ
21elexi 2812 1 1 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2200  Vcvv 2799  cc 7993  1c1 7996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-ext 2211  ax-1cn 8088
This theorem depends on definitions:  df-bi 117  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801
This theorem is referenced by:  nn1suc  9125  nn0ind-raph  9560  fzprval  10274  fztpval  10275  m1expcl2  10778  1exp  10785  facnn  10944  fac0  10945  prhash2ex  11026  prodf1f  12049  fprodntrivap  12090  prod1dc  12092  fprodssdc  12096  ege2le3  12177  1nprm  12631  pcmpt  12861  dvexp  15379  dvef  15395  lgsdir2lem3  15703  2o01f  16317  iswomni0  16378
  Copyright terms: Public domain W3C validator