![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1ex | GIF version |
Description: 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
1ex | ⊢ 1 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7967 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | elexi 2772 | 1 ⊢ 1 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 ℂcc 7872 1c1 7875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 ax-1cn 7967 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 |
This theorem is referenced by: nn1suc 9003 nn0ind-raph 9437 fzprval 10151 fztpval 10152 m1expcl2 10635 1exp 10642 facnn 10801 fac0 10802 prhash2ex 10883 prodf1f 11689 fprodntrivap 11730 prod1dc 11732 fprodssdc 11736 ege2le3 11817 1nprm 12255 pcmpt 12484 dvexp 14890 dvef 14906 lgsdir2lem3 15187 2o01f 15557 iswomni0 15611 |
Copyright terms: Public domain | W3C validator |