ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1ex GIF version

Theorem 1ex 8021
Description: 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
1ex 1 ∈ V

Proof of Theorem 1ex
StepHypRef Expression
1 ax-1cn 7972 . 2 1 ∈ ℂ
21elexi 2775 1 1 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2167  Vcvv 2763  cc 7877  1c1 7880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178  ax-1cn 7972
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765
This theorem is referenced by:  nn1suc  9009  nn0ind-raph  9443  fzprval  10157  fztpval  10158  m1expcl2  10653  1exp  10660  facnn  10819  fac0  10820  prhash2ex  10901  prodf1f  11708  fprodntrivap  11749  prod1dc  11751  fprodssdc  11755  ege2le3  11836  1nprm  12282  pcmpt  12512  dvexp  14947  dvef  14963  lgsdir2lem3  15271  2o01f  15641  iswomni0  15695
  Copyright terms: Public domain W3C validator