| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1ex | GIF version | ||
| Description: 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1ex | ⊢ 1 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8088 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | elexi 2812 | 1 ⊢ 1 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ℂcc 7993 1c1 7996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 ax-1cn 8088 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: nn1suc 9125 nn0ind-raph 9560 fzprval 10274 fztpval 10275 m1expcl2 10778 1exp 10785 facnn 10944 fac0 10945 prhash2ex 11026 prodf1f 12049 fprodntrivap 12090 prod1dc 12092 fprodssdc 12096 ege2le3 12177 1nprm 12631 pcmpt 12861 dvexp 15379 dvef 15395 lgsdir2lem3 15703 2o01f 16317 iswomni0 16378 |
| Copyright terms: Public domain | W3C validator |