ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1ex GIF version

Theorem 1ex 8049
Description: 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
1ex 1 ∈ V

Proof of Theorem 1ex
StepHypRef Expression
1 ax-1cn 8000 . 2 1 ∈ ℂ
21elexi 2783 1 1 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2175  Vcvv 2771  cc 7905  1c1 7908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-ext 2186  ax-1cn 8000
This theorem depends on definitions:  df-bi 117  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-v 2773
This theorem is referenced by:  nn1suc  9037  nn0ind-raph  9472  fzprval  10186  fztpval  10187  m1expcl2  10687  1exp  10694  facnn  10853  fac0  10854  prhash2ex  10935  prodf1f  11773  fprodntrivap  11814  prod1dc  11816  fprodssdc  11820  ege2le3  11901  1nprm  12355  pcmpt  12585  dvexp  15101  dvef  15117  lgsdir2lem3  15425  2o01f  15795  iswomni0  15854
  Copyright terms: Public domain W3C validator