Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1ex | GIF version |
Description: 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
1ex | ⊢ 1 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7854 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | elexi 2742 | 1 ⊢ 1 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 ℂcc 7759 1c1 7762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 ax-1cn 7854 |
This theorem depends on definitions: df-bi 116 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: nn1suc 8884 nn0ind-raph 9316 fzprval 10025 fztpval 10026 m1expcl2 10485 1exp 10492 facnn 10648 fac0 10649 prhash2ex 10731 prodf1f 11493 fprodntrivap 11534 prod1dc 11536 fprodssdc 11540 ege2le3 11621 1nprm 12055 pcmpt 12282 dvexp 13428 dvef 13441 lgsdir2lem3 13684 2o01f 13989 iswomni0 14043 |
Copyright terms: Public domain | W3C validator |