ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1ex GIF version

Theorem 1ex 8014
Description: 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
1ex 1 ∈ V

Proof of Theorem 1ex
StepHypRef Expression
1 ax-1cn 7965 . 2 1 ∈ ℂ
21elexi 2772 1 1 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2164  Vcvv 2760  cc 7870  1c1 7873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2175  ax-1cn 7965
This theorem depends on definitions:  df-bi 117  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762
This theorem is referenced by:  nn1suc  9001  nn0ind-raph  9434  fzprval  10148  fztpval  10149  m1expcl2  10632  1exp  10639  facnn  10798  fac0  10799  prhash2ex  10880  prodf1f  11686  fprodntrivap  11727  prod1dc  11729  fprodssdc  11733  ege2le3  11814  1nprm  12252  pcmpt  12481  dvexp  14860  dvef  14873  lgsdir2lem3  15146  2o01f  15487  iswomni0  15541
  Copyright terms: Public domain W3C validator