| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1ex | GIF version | ||
| Description: 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1ex | ⊢ 1 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8038 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | elexi 2786 | 1 ⊢ 1 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 ℂcc 7943 1c1 7946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2188 ax-1cn 8038 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 |
| This theorem is referenced by: nn1suc 9075 nn0ind-raph 9510 fzprval 10224 fztpval 10225 m1expcl2 10728 1exp 10735 facnn 10894 fac0 10895 prhash2ex 10976 prodf1f 11929 fprodntrivap 11970 prod1dc 11972 fprodssdc 11976 ege2le3 12057 1nprm 12511 pcmpt 12741 dvexp 15258 dvef 15274 lgsdir2lem3 15582 2o01f 16070 iswomni0 16131 |
| Copyright terms: Public domain | W3C validator |