| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 1ex | GIF version | ||
| Description: 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.) | 
| Ref | Expression | 
|---|---|
| 1ex | ⊢ 1 ∈ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-1cn 7972 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | elexi 2775 | 1 ⊢ 1 ∈ V | 
| Colors of variables: wff set class | 
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ℂcc 7877 1c1 7880 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 ax-1cn 7972 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: nn1suc 9009 nn0ind-raph 9443 fzprval 10157 fztpval 10158 m1expcl2 10653 1exp 10660 facnn 10819 fac0 10820 prhash2ex 10901 prodf1f 11708 fprodntrivap 11749 prod1dc 11751 fprodssdc 11755 ege2le3 11836 1nprm 12282 pcmpt 12512 dvexp 14947 dvef 14963 lgsdir2lem3 15271 2o01f 15641 iswomni0 15695 | 
| Copyright terms: Public domain | W3C validator |