Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1ex | GIF version |
Description: 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
1ex | ⊢ 1 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7846 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | elexi 2738 | 1 ⊢ 1 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2726 ℂcc 7751 1c1 7754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 ax-1cn 7846 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: nn1suc 8876 nn0ind-raph 9308 fzprval 10017 fztpval 10018 m1expcl2 10477 1exp 10484 facnn 10640 fac0 10641 prhash2ex 10722 prodf1f 11484 fprodntrivap 11525 prod1dc 11527 fprodssdc 11531 ege2le3 11612 1nprm 12046 pcmpt 12273 dvexp 13315 dvef 13328 lgsdir2lem3 13571 2o01f 13876 iswomni0 13930 |
Copyright terms: Public domain | W3C validator |