ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1ex GIF version

Theorem 1ex 7462
Description: 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
1ex 1 ∈ V

Proof of Theorem 1ex
StepHypRef Expression
1 ax-1cn 7417 . 2 1 ∈ ℂ
21elexi 2631 1 1 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 1438  Vcvv 2619  cc 7327  1c1 7330
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-ext 2070  ax-1cn 7417
This theorem depends on definitions:  df-bi 115  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-v 2621
This theorem is referenced by:  nn1suc  8413  nn0ind-raph  8833  fzprval  9463  fztpval  9464  m1expcl2  9942  1exp  9949  facnn  10100  fac0  10101  prhash2ex  10182  1nprm  11178
  Copyright terms: Public domain W3C validator