| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1ex | GIF version | ||
| Description: 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1ex | ⊢ 1 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8017 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | elexi 2783 | 1 ⊢ 1 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 Vcvv 2771 ℂcc 7922 1c1 7925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-ext 2186 ax-1cn 8017 |
| This theorem depends on definitions: df-bi 117 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 |
| This theorem is referenced by: nn1suc 9054 nn0ind-raph 9489 fzprval 10203 fztpval 10204 m1expcl2 10704 1exp 10711 facnn 10870 fac0 10871 prhash2ex 10952 prodf1f 11796 fprodntrivap 11837 prod1dc 11839 fprodssdc 11843 ege2le3 11924 1nprm 12378 pcmpt 12608 dvexp 15125 dvef 15141 lgsdir2lem3 15449 2o01f 15864 iswomni0 15923 |
| Copyright terms: Public domain | W3C validator |