| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1ex | GIF version | ||
| Description: 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1ex | ⊢ 1 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8000 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | elexi 2783 | 1 ⊢ 1 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 Vcvv 2771 ℂcc 7905 1c1 7908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-ext 2186 ax-1cn 8000 |
| This theorem depends on definitions: df-bi 117 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 |
| This theorem is referenced by: nn1suc 9037 nn0ind-raph 9472 fzprval 10186 fztpval 10187 m1expcl2 10687 1exp 10694 facnn 10853 fac0 10854 prhash2ex 10935 prodf1f 11773 fprodntrivap 11814 prod1dc 11816 fprodssdc 11820 ege2le3 11901 1nprm 12355 pcmpt 12585 dvexp 15101 dvef 15117 lgsdir2lem3 15425 2o01f 15795 iswomni0 15854 |
| Copyright terms: Public domain | W3C validator |