![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > coeq2d | GIF version |
Description: Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
Ref | Expression |
---|---|
coeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
coeq2d | ⊢ (𝜑 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | coeq2 4820 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∘ ccom 4663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-in 3159 df-ss 3166 df-br 4030 df-opab 4091 df-co 4668 |
This theorem is referenced by: coeq12d 4826 relcoi1 5197 f1ococnv1 5529 funcoeqres 5531 fcof1o 5832 foeqcnvco 5833 mapen 6902 hashfacen 10907 prdsex 12880 |
Copyright terms: Public domain | W3C validator |