Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > coeq2d | GIF version |
Description: Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
Ref | Expression |
---|---|
coeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
coeq2d | ⊢ (𝜑 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | coeq2 4737 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1332 ∘ ccom 4583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-in 3104 df-ss 3111 df-br 3962 df-opab 4022 df-co 4588 |
This theorem is referenced by: coeq12d 4743 relcoi1 5110 f1ococnv1 5436 funcoeqres 5438 fcof1o 5730 foeqcnvco 5731 mapen 6780 hashfacen 10684 |
Copyright terms: Public domain | W3C validator |