Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbco3g | GIF version |
Description: Composition of two class substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.) |
Ref | Expression |
---|---|
sbcco3g.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbco3g | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐷 = ⦋𝐶 / 𝑦⦌𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbnestg 3085 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐷 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐷) | |
2 | elex 2723 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
3 | nfcvd 2300 | . . . . 5 ⊢ (𝐴 ∈ V → Ⅎ𝑥𝐶) | |
4 | sbcco3g.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
5 | 3, 4 | csbiegf 3074 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
6 | 2, 5 | syl 14 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
7 | 6 | csbeq1d 3038 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐷 = ⦋𝐶 / 𝑦⦌𝐷) |
8 | 1, 7 | eqtrd 2190 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐷 = ⦋𝐶 / 𝑦⦌𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ∈ wcel 2128 Vcvv 2712 ⦋csb 3031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-sbc 2938 df-csb 3032 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |