![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbco3g | GIF version |
Description: Composition of two class substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.) |
Ref | Expression |
---|---|
sbcco3g.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbco3g | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐷 = ⦋𝐶 / 𝑦⦌𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbnestg 2982 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐷 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐷) | |
2 | elex 2630 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
3 | nfcvd 2229 | . . . . 5 ⊢ (𝐴 ∈ V → Ⅎ𝑥𝐶) | |
4 | sbcco3g.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
5 | 3, 4 | csbiegf 2971 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
6 | 2, 5 | syl 14 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
7 | 6 | csbeq1d 2939 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐷 = ⦋𝐶 / 𝑦⦌𝐷) |
8 | 1, 7 | eqtrd 2120 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐷 = ⦋𝐶 / 𝑦⦌𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 ∈ wcel 1438 Vcvv 2619 ⦋csb 2933 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-sbc 2841 df-csb 2934 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |