![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbeq1d | GIF version |
Description: Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.) |
Ref | Expression |
---|---|
csbeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
csbeq1d | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | csbeq1 3083 | . 2 ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⦋csb 3080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-sbc 2986 df-csb 3081 |
This theorem is referenced by: csbidmg 3137 csbco3g 3139 fmptcof 5725 mpomptsx 6250 dmmpossx 6252 fmpox 6253 fmpoco 6269 xpf1o 6900 summodclem3 11523 summodclem2a 11524 summodc 11526 zsumdc 11527 fsum3 11530 sumsnf 11552 fsumcnv 11580 fisumcom2 11581 fsumshftm 11588 fisum0diag2 11590 prodmodclem3 11718 prodmodclem2a 11719 prodmodc 11721 zproddc 11722 fprodseq 11726 prodsnf 11735 fprodcnv 11768 fprodcom2fi 11769 pcmpt 12481 ctiunctlemu1st 12591 ctiunctlemu2nd 12592 ctiunctlemudc 12594 ctiunctlemfo 12596 prdsex 12880 imasex 12888 psrval 14152 |
Copyright terms: Public domain | W3C validator |