| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbeq1d | GIF version | ||
| Description: Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.) |
| Ref | Expression |
|---|---|
| csbeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| csbeq1d | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | csbeq1 3107 | . 2 ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ⦋csb 3104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-sbc 3009 df-csb 3105 |
| This theorem is referenced by: csbidmg 3161 csbco3g 3163 fmptcof 5775 mpomptsx 6313 dmmpossx 6315 fmpox 6316 fmpoco 6332 xpf1o 6973 summodclem3 11857 summodclem2a 11858 summodc 11860 zsumdc 11861 fsum3 11864 sumsnf 11886 fsumcnv 11914 fisumcom2 11915 fsumshftm 11922 fisum0diag2 11924 prodmodclem3 12052 prodmodclem2a 12053 prodmodc 12055 zproddc 12056 fprodseq 12060 prodsnf 12069 fprodcnv 12102 fprodcom2fi 12103 pcmpt 12832 ctiunctlemu1st 12971 ctiunctlemu2nd 12972 ctiunctlemudc 12974 ctiunctlemfo 12976 prdsex 13268 imasex 13304 psrval 14595 fsumdvdsmul 15630 |
| Copyright terms: Public domain | W3C validator |