| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbeq1d | GIF version | ||
| Description: Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.) |
| Ref | Expression |
|---|---|
| csbeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| csbeq1d | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | csbeq1 3097 | . 2 ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⦋csb 3094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-sbc 3000 df-csb 3095 |
| This theorem is referenced by: csbidmg 3151 csbco3g 3153 fmptcof 5754 mpomptsx 6290 dmmpossx 6292 fmpox 6293 fmpoco 6309 xpf1o 6948 summodclem3 11735 summodclem2a 11736 summodc 11738 zsumdc 11739 fsum3 11742 sumsnf 11764 fsumcnv 11792 fisumcom2 11793 fsumshftm 11800 fisum0diag2 11802 prodmodclem3 11930 prodmodclem2a 11931 prodmodc 11933 zproddc 11934 fprodseq 11938 prodsnf 11947 fprodcnv 11980 fprodcom2fi 11981 pcmpt 12710 ctiunctlemu1st 12849 ctiunctlemu2nd 12850 ctiunctlemudc 12852 ctiunctlemfo 12854 prdsex 13145 imasex 13181 psrval 14472 fsumdvdsmul 15507 |
| Copyright terms: Public domain | W3C validator |