ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbeq1d GIF version

Theorem csbeq1d 3101
Description: Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.)
Hypothesis
Ref Expression
csbeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
csbeq1d (𝜑𝐴 / 𝑥𝐶 = 𝐵 / 𝑥𝐶)

Proof of Theorem csbeq1d
StepHypRef Expression
1 csbeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 csbeq1 3097 . 2 (𝐴 = 𝐵𝐴 / 𝑥𝐶 = 𝐵 / 𝑥𝐶)
31, 2syl 14 1 (𝜑𝐴 / 𝑥𝐶 = 𝐵 / 𝑥𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  csb 3094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-sbc 3000  df-csb 3095
This theorem is referenced by:  csbidmg  3151  csbco3g  3153  fmptcof  5754  mpomptsx  6290  dmmpossx  6292  fmpox  6293  fmpoco  6309  xpf1o  6948  summodclem3  11735  summodclem2a  11736  summodc  11738  zsumdc  11739  fsum3  11742  sumsnf  11764  fsumcnv  11792  fisumcom2  11793  fsumshftm  11800  fisum0diag2  11802  prodmodclem3  11930  prodmodclem2a  11931  prodmodc  11933  zproddc  11934  fprodseq  11938  prodsnf  11947  fprodcnv  11980  fprodcom2fi  11981  pcmpt  12710  ctiunctlemu1st  12849  ctiunctlemu2nd  12850  ctiunctlemudc  12852  ctiunctlemfo  12854  prdsex  13145  imasex  13181  psrval  14472  fsumdvdsmul  15507
  Copyright terms: Public domain W3C validator