Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbeq1d | GIF version |
Description: Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.) |
Ref | Expression |
---|---|
csbeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
csbeq1d | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | csbeq1 3052 | . 2 ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ⦋csb 3049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-sbc 2956 df-csb 3050 |
This theorem is referenced by: csbidmg 3105 csbco3g 3107 fmptcof 5663 mpomptsx 6176 dmmpossx 6178 fmpox 6179 fmpoco 6195 xpf1o 6822 summodclem3 11343 summodclem2a 11344 summodc 11346 zsumdc 11347 fsum3 11350 sumsnf 11372 fsumcnv 11400 fisumcom2 11401 fsumshftm 11408 fisum0diag2 11410 prodmodclem3 11538 prodmodclem2a 11539 prodmodc 11541 zproddc 11542 fprodseq 11546 prodsnf 11555 fprodcnv 11588 fprodcom2fi 11589 pcmpt 12295 ctiunctlemu1st 12389 ctiunctlemu2nd 12390 ctiunctlemudc 12392 ctiunctlemfo 12394 |
Copyright terms: Public domain | W3C validator |