Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbeq1d | GIF version |
Description: Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.) |
Ref | Expression |
---|---|
csbeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
csbeq1d | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | csbeq1 3058 | . 2 ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ⦋csb 3055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-sbc 2961 df-csb 3056 |
This theorem is referenced by: csbidmg 3111 csbco3g 3113 fmptcof 5675 mpomptsx 6188 dmmpossx 6190 fmpox 6191 fmpoco 6207 xpf1o 6834 summodclem3 11354 summodclem2a 11355 summodc 11357 zsumdc 11358 fsum3 11361 sumsnf 11383 fsumcnv 11411 fisumcom2 11412 fsumshftm 11419 fisum0diag2 11421 prodmodclem3 11549 prodmodclem2a 11550 prodmodc 11552 zproddc 11553 fprodseq 11557 prodsnf 11566 fprodcnv 11599 fprodcom2fi 11600 pcmpt 12306 ctiunctlemu1st 12400 ctiunctlemu2nd 12401 ctiunctlemudc 12403 ctiunctlemfo 12405 |
Copyright terms: Public domain | W3C validator |