| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbeq1d | GIF version | ||
| Description: Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.) |
| Ref | Expression |
|---|---|
| csbeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| csbeq1d | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | csbeq1 3127 | . 2 ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ⦋csb 3124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-sbc 3029 df-csb 3125 |
| This theorem is referenced by: csbidmg 3181 csbco3g 3183 fmptcof 5804 mpomptsx 6349 dmmpossx 6351 fmpox 6352 fmpoco 6368 xpf1o 7013 summodclem3 11899 summodclem2a 11900 summodc 11902 zsumdc 11903 fsum3 11906 sumsnf 11928 fsumcnv 11956 fisumcom2 11957 fsumshftm 11964 fisum0diag2 11966 prodmodclem3 12094 prodmodclem2a 12095 prodmodc 12097 zproddc 12098 fprodseq 12102 prodsnf 12111 fprodcnv 12144 fprodcom2fi 12145 pcmpt 12874 ctiunctlemu1st 13013 ctiunctlemu2nd 13014 ctiunctlemudc 13016 ctiunctlemfo 13018 prdsex 13310 imasex 13346 psrval 14638 fsumdvdsmul 15673 |
| Copyright terms: Public domain | W3C validator |