| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbeq1d | GIF version | ||
| Description: Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.) |
| Ref | Expression |
|---|---|
| csbeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| csbeq1d | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | csbeq1 3087 | . 2 ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ⦋csb 3084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-sbc 2990 df-csb 3085 |
| This theorem is referenced by: csbidmg 3141 csbco3g 3143 fmptcof 5732 mpomptsx 6264 dmmpossx 6266 fmpox 6267 fmpoco 6283 xpf1o 6914 summodclem3 11562 summodclem2a 11563 summodc 11565 zsumdc 11566 fsum3 11569 sumsnf 11591 fsumcnv 11619 fisumcom2 11620 fsumshftm 11627 fisum0diag2 11629 prodmodclem3 11757 prodmodclem2a 11758 prodmodc 11760 zproddc 11761 fprodseq 11765 prodsnf 11774 fprodcnv 11807 fprodcom2fi 11808 pcmpt 12537 ctiunctlemu1st 12676 ctiunctlemu2nd 12677 ctiunctlemudc 12679 ctiunctlemfo 12681 prdsex 12971 imasex 13007 psrval 14296 fsumdvdsmul 15311 |
| Copyright terms: Public domain | W3C validator |