Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbeq1d | GIF version |
Description: Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.) |
Ref | Expression |
---|---|
csbeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
csbeq1d | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | csbeq1 3048 | . 2 ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ⦋csb 3045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-sbc 2952 df-csb 3046 |
This theorem is referenced by: csbidmg 3101 csbco3g 3103 fmptcof 5652 mpomptsx 6165 dmmpossx 6167 fmpox 6168 fmpoco 6184 xpf1o 6810 summodclem3 11321 summodclem2a 11322 summodc 11324 zsumdc 11325 fsum3 11328 sumsnf 11350 fsumcnv 11378 fisumcom2 11379 fsumshftm 11386 fisum0diag2 11388 prodmodclem3 11516 prodmodclem2a 11517 prodmodc 11519 zproddc 11520 fprodseq 11524 prodsnf 11533 fprodcnv 11566 fprodcom2fi 11567 pcmpt 12273 ctiunctlemu1st 12367 ctiunctlemu2nd 12368 ctiunctlemudc 12370 ctiunctlemfo 12372 |
Copyright terms: Public domain | W3C validator |