ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiegf GIF version

Theorem csbiegf 3088
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbiegf.1 (𝐴𝑉𝑥𝐶)
csbiegf.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbiegf (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem csbiegf
StepHypRef Expression
1 csbiegf.2 . . 3 (𝑥 = 𝐴𝐵 = 𝐶)
21ax-gen 1437 . 2 𝑥(𝑥 = 𝐴𝐵 = 𝐶)
3 csbiegf.1 . . 3 (𝐴𝑉𝑥𝐶)
4 csbiebt 3084 . . 3 ((𝐴𝑉𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
53, 4mpdan 418 . 2 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
62, 5mpbii 147 1 (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341   = wceq 1343  wcel 2136  wnfc 2295  csb 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952  df-csb 3046
This theorem is referenced by:  csbief  3089  sbcco3g  3102  csbco3g  3103  fmptcof  5652  fmpoco  6184  iseqf1olemjpcl  10430  iseqf1olemqpcl  10431  iseqf1olemfvp  10432  seq3f1olemqsum  10435  sumsnf  11350  prodsnf  11533  pcmpt  12273
  Copyright terms: Public domain W3C validator