ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiegf GIF version

Theorem csbiegf 3102
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbiegf.1 (𝐴𝑉𝑥𝐶)
csbiegf.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbiegf (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem csbiegf
StepHypRef Expression
1 csbiegf.2 . . 3 (𝑥 = 𝐴𝐵 = 𝐶)
21ax-gen 1449 . 2 𝑥(𝑥 = 𝐴𝐵 = 𝐶)
3 csbiegf.1 . . 3 (𝐴𝑉𝑥𝐶)
4 csbiebt 3098 . . 3 ((𝐴𝑉𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
53, 4mpdan 421 . 2 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
62, 5mpbii 148 1 (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1351   = wceq 1353  wcel 2148  wnfc 2306  csb 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-sbc 2965  df-csb 3060
This theorem is referenced by:  csbief  3103  sbcco3g  3116  csbco3g  3117  fmptcof  5685  fmpoco  6219  iseqf1olemjpcl  10497  iseqf1olemqpcl  10498  iseqf1olemfvp  10499  seq3f1olemqsum  10502  sumsnf  11419  prodsnf  11602  pcmpt  12343
  Copyright terms: Public domain W3C validator