ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmex GIF version

Theorem rhmex 13656
Description: Set existence for ring homomorphism. (Contributed by Jim Kingdon, 16-May-2025.)
Assertion
Ref Expression
rhmex ((𝑅𝑉𝑆𝑊) → (𝑅 RingHom 𝑆) ∈ V)

Proof of Theorem rhmex
Dummy variables 𝑟 𝑠 𝑓 𝑣 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12679 . . . . . 6 Base Fn V
2 vex 2763 . . . . . 6 𝑟 ∈ V
3 funfvex 5572 . . . . . . 7 ((Fun Base ∧ 𝑟 ∈ dom Base) → (Base‘𝑟) ∈ V)
43funfni 5355 . . . . . 6 ((Base Fn V ∧ 𝑟 ∈ V) → (Base‘𝑟) ∈ V)
51, 2, 4mp2an 426 . . . . 5 (Base‘𝑟) ∈ V
6 vex 2763 . . . . . . 7 𝑠 ∈ V
7 funfvex 5572 . . . . . . . 8 ((Fun Base ∧ 𝑠 ∈ dom Base) → (Base‘𝑠) ∈ V)
87funfni 5355 . . . . . . 7 ((Base Fn V ∧ 𝑠 ∈ V) → (Base‘𝑠) ∈ V)
91, 6, 8mp2an 426 . . . . . 6 (Base‘𝑠) ∈ V
10 fnmap 6711 . . . . . . . 8 𝑚 Fn (V × V)
11 vex 2763 . . . . . . . 8 𝑤 ∈ V
12 vex 2763 . . . . . . . 8 𝑣 ∈ V
13 fnovex 5952 . . . . . . . 8 (( ↑𝑚 Fn (V × V) ∧ 𝑤 ∈ V ∧ 𝑣 ∈ V) → (𝑤𝑚 𝑣) ∈ V)
1410, 11, 12, 13mp3an 1348 . . . . . . 7 (𝑤𝑚 𝑣) ∈ V
1514rabex 4174 . . . . . 6 {𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} ∈ V
169, 15csbexa 4159 . . . . 5 (Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} ∈ V
175, 16csbexa 4159 . . . 4 (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} ∈ V
1817a1i 9 . . 3 ((𝑅𝑉𝑆𝑊) → (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} ∈ V)
1918alrimivv 1886 . 2 ((𝑅𝑉𝑆𝑊) → ∀𝑟𝑠(Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} ∈ V)
20 simpl 109 . 2 ((𝑅𝑉𝑆𝑊) → 𝑅𝑉)
21 simpr 110 . 2 ((𝑅𝑉𝑆𝑊) → 𝑆𝑊)
22 df-rhm 13651 . . 3 RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))})
2322mpofvex 6260 . 2 ((∀𝑟𝑠(Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} ∈ V ∧ 𝑅𝑉𝑆𝑊) → (𝑅 RingHom 𝑆) ∈ V)
2419, 20, 21, 23syl3anc 1249 1 ((𝑅𝑉𝑆𝑊) → (𝑅 RingHom 𝑆) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362   = wceq 1364  wcel 2164  wral 2472  {crab 2476  Vcvv 2760  csb 3081   × cxp 4658   Fn wfn 5250  cfv 5255  (class class class)co 5919  𝑚 cmap 6704  Basecbs 12621  +gcplusg 12698  .rcmulr 12699  1rcur 13458  Ringcrg 13495   RingHom crh 13649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627  df-rhm 13651
This theorem is referenced by:  isrim0  13660  zrhval  14116  zrhvalg  14117  zrhex  14120
  Copyright terms: Public domain W3C validator