ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmex GIF version

Theorem rhmex 13504
Description: Set existence for ring homomorphism. (Contributed by Jim Kingdon, 16-May-2025.)
Assertion
Ref Expression
rhmex ((𝑅𝑉𝑆𝑊) → (𝑅 RingHom 𝑆) ∈ V)

Proof of Theorem rhmex
Dummy variables 𝑟 𝑠 𝑓 𝑣 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12569 . . . . . 6 Base Fn V
2 vex 2755 . . . . . 6 𝑟 ∈ V
3 funfvex 5551 . . . . . . 7 ((Fun Base ∧ 𝑟 ∈ dom Base) → (Base‘𝑟) ∈ V)
43funfni 5335 . . . . . 6 ((Base Fn V ∧ 𝑟 ∈ V) → (Base‘𝑟) ∈ V)
51, 2, 4mp2an 426 . . . . 5 (Base‘𝑟) ∈ V
6 vex 2755 . . . . . . 7 𝑠 ∈ V
7 funfvex 5551 . . . . . . . 8 ((Fun Base ∧ 𝑠 ∈ dom Base) → (Base‘𝑠) ∈ V)
87funfni 5335 . . . . . . 7 ((Base Fn V ∧ 𝑠 ∈ V) → (Base‘𝑠) ∈ V)
91, 6, 8mp2an 426 . . . . . 6 (Base‘𝑠) ∈ V
10 fnmap 6680 . . . . . . . 8 𝑚 Fn (V × V)
11 vex 2755 . . . . . . . 8 𝑤 ∈ V
12 vex 2755 . . . . . . . 8 𝑣 ∈ V
13 fnovex 5928 . . . . . . . 8 (( ↑𝑚 Fn (V × V) ∧ 𝑤 ∈ V ∧ 𝑣 ∈ V) → (𝑤𝑚 𝑣) ∈ V)
1410, 11, 12, 13mp3an 1348 . . . . . . 7 (𝑤𝑚 𝑣) ∈ V
1514rabex 4162 . . . . . 6 {𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} ∈ V
169, 15csbexa 4147 . . . . 5 (Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} ∈ V
175, 16csbexa 4147 . . . 4 (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} ∈ V
1817a1i 9 . . 3 ((𝑅𝑉𝑆𝑊) → (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} ∈ V)
1918alrimivv 1886 . 2 ((𝑅𝑉𝑆𝑊) → ∀𝑟𝑠(Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} ∈ V)
20 simpl 109 . 2 ((𝑅𝑉𝑆𝑊) → 𝑅𝑉)
21 simpr 110 . 2 ((𝑅𝑉𝑆𝑊) → 𝑆𝑊)
22 df-rhm 13499 . . 3 RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))})
2322mpofvex 6227 . 2 ((∀𝑟𝑠(Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤𝑚 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))} ∈ V ∧ 𝑅𝑉𝑆𝑊) → (𝑅 RingHom 𝑆) ∈ V)
2419, 20, 21, 23syl3anc 1249 1 ((𝑅𝑉𝑆𝑊) → (𝑅 RingHom 𝑆) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362   = wceq 1364  wcel 2160  wral 2468  {crab 2472  Vcvv 2752  csb 3072   × cxp 4642   Fn wfn 5230  cfv 5235  (class class class)co 5895  𝑚 cmap 6673  Basecbs 12511  +gcplusg 12586  .rcmulr 12587  1rcur 13310  Ringcrg 13347   RingHom crh 13497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7931  ax-resscn 7932  ax-1re 7934  ax-addrcl 7937
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fo 5241  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-map 6675  df-inn 8949  df-ndx 12514  df-slot 12515  df-base 12517  df-rhm 13499
This theorem is referenced by:  isrim0  13508  zrhvalg  13912  zrhex  13915
  Copyright terms: Public domain W3C validator