| Step | Hyp | Ref
| Expression |
| 1 | | basfn 12736 |
. . . . . 6
⊢ Base Fn
V |
| 2 | | vex 2766 |
. . . . . 6
⊢ 𝑟 ∈ V |
| 3 | | funfvex 5575 |
. . . . . . 7
⊢ ((Fun
Base ∧ 𝑟 ∈ dom
Base) → (Base‘𝑟)
∈ V) |
| 4 | 3 | funfni 5358 |
. . . . . 6
⊢ ((Base Fn
V ∧ 𝑟 ∈ V) →
(Base‘𝑟) ∈
V) |
| 5 | 1, 2, 4 | mp2an 426 |
. . . . 5
⊢
(Base‘𝑟)
∈ V |
| 6 | | vex 2766 |
. . . . . . 7
⊢ 𝑠 ∈ V |
| 7 | | funfvex 5575 |
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝑠 ∈ dom
Base) → (Base‘𝑠)
∈ V) |
| 8 | 7 | funfni 5358 |
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝑠 ∈ V) →
(Base‘𝑠) ∈
V) |
| 9 | 1, 6, 8 | mp2an 426 |
. . . . . 6
⊢
(Base‘𝑠)
∈ V |
| 10 | | fnmap 6714 |
. . . . . . . 8
⊢
↑𝑚 Fn (V × V) |
| 11 | | vex 2766 |
. . . . . . . 8
⊢ 𝑤 ∈ V |
| 12 | | vex 2766 |
. . . . . . . 8
⊢ 𝑣 ∈ V |
| 13 | | fnovex 5955 |
. . . . . . . 8
⊢ ((
↑𝑚 Fn (V × V) ∧ 𝑤 ∈ V ∧ 𝑣 ∈ V) → (𝑤 ↑𝑚 𝑣) ∈ V) |
| 14 | 10, 11, 12, 13 | mp3an 1348 |
. . . . . . 7
⊢ (𝑤 ↑𝑚
𝑣) ∈
V |
| 15 | 14 | rabex 4177 |
. . . . . 6
⊢ {𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} ∈ V |
| 16 | 9, 15 | csbexa 4162 |
. . . . 5
⊢
⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} ∈ V |
| 17 | 5, 16 | csbexa 4162 |
. . . 4
⊢
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} ∈ V |
| 18 | 17 | a1i 9 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} ∈ V) |
| 19 | 18 | alrimivv 1889 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ∀𝑟∀𝑠⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} ∈ V) |
| 20 | | simpl 109 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝑅 ∈ 𝑉) |
| 21 | | simpr 110 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝑆 ∈ 𝑊) |
| 22 | | df-rhm 13708 |
. . 3
⊢ RingHom
= (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) |
| 23 | 22 | mpofvex 6263 |
. 2
⊢
((∀𝑟∀𝑠⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))} ∈ V ∧ 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 RingHom 𝑆) ∈ V) |
| 24 | 19, 20, 21, 23 | syl3anc 1249 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 RingHom 𝑆) ∈ V) |