ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbexga GIF version

Theorem csbexga 4212
Description: The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbexga ((𝐴𝑉 ∧ ∀𝑥 𝐵𝑊) → 𝐴 / 𝑥𝐵 ∈ V)

Proof of Theorem csbexga
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3125 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 abid2 2350 . . . . . . 7 {𝑦𝑦𝐵} = 𝐵
3 elex 2811 . . . . . . 7 (𝐵𝑊𝐵 ∈ V)
42, 3eqeltrid 2316 . . . . . 6 (𝐵𝑊 → {𝑦𝑦𝐵} ∈ V)
54alimi 1501 . . . . 5 (∀𝑥 𝐵𝑊 → ∀𝑥{𝑦𝑦𝐵} ∈ V)
6 spsbc 3040 . . . . 5 (𝐴𝑉 → (∀𝑥{𝑦𝑦𝐵} ∈ V → [𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V))
75, 6syl5 32 . . . 4 (𝐴𝑉 → (∀𝑥 𝐵𝑊[𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V))
87imp 124 . . 3 ((𝐴𝑉 ∧ ∀𝑥 𝐵𝑊) → [𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V)
9 nfcv 2372 . . . . 5 𝑥V
109sbcabel 3111 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ V))
1110adantr 276 . . 3 ((𝐴𝑉 ∧ ∀𝑥 𝐵𝑊) → ([𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ V))
128, 11mpbid 147 . 2 ((𝐴𝑉 ∧ ∀𝑥 𝐵𝑊) → {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ V)
131, 12eqeltrid 2316 1 ((𝐴𝑉 ∧ ∀𝑥 𝐵𝑊) → 𝐴 / 𝑥𝐵 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1393  wcel 2200  {cab 2215  Vcvv 2799  [wsbc 3028  csb 3124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029  df-csb 3125
This theorem is referenced by:  csbexa  4213  prdsex  13310  imasex  13346
  Copyright terms: Public domain W3C validator