ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbexga GIF version

Theorem csbexga 4162
Description: The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbexga ((𝐴𝑉 ∧ ∀𝑥 𝐵𝑊) → 𝐴 / 𝑥𝐵 ∈ V)

Proof of Theorem csbexga
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3085 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 abid2 2317 . . . . . . 7 {𝑦𝑦𝐵} = 𝐵
3 elex 2774 . . . . . . 7 (𝐵𝑊𝐵 ∈ V)
42, 3eqeltrid 2283 . . . . . 6 (𝐵𝑊 → {𝑦𝑦𝐵} ∈ V)
54alimi 1469 . . . . 5 (∀𝑥 𝐵𝑊 → ∀𝑥{𝑦𝑦𝐵} ∈ V)
6 spsbc 3001 . . . . 5 (𝐴𝑉 → (∀𝑥{𝑦𝑦𝐵} ∈ V → [𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V))
75, 6syl5 32 . . . 4 (𝐴𝑉 → (∀𝑥 𝐵𝑊[𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V))
87imp 124 . . 3 ((𝐴𝑉 ∧ ∀𝑥 𝐵𝑊) → [𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V)
9 nfcv 2339 . . . . 5 𝑥V
109sbcabel 3071 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ V))
1110adantr 276 . . 3 ((𝐴𝑉 ∧ ∀𝑥 𝐵𝑊) → ([𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ V))
128, 11mpbid 147 . 2 ((𝐴𝑉 ∧ ∀𝑥 𝐵𝑊) → {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ V)
131, 12eqeltrid 2283 1 ((𝐴𝑉 ∧ ∀𝑥 𝐵𝑊) → 𝐴 / 𝑥𝐵 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362  wcel 2167  {cab 2182  Vcvv 2763  [wsbc 2989  csb 3084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990  df-csb 3085
This theorem is referenced by:  csbexa  4163  prdsex  12971  imasex  13007
  Copyright terms: Public domain W3C validator