![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbexga | GIF version |
Description: The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbexga | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 𝐵 ∈ 𝑊) → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3059 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
2 | abid2 2298 | . . . . . . 7 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐵} = 𝐵 | |
3 | elex 2749 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
4 | 2, 3 | eqeltrid 2264 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → {𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V) |
5 | 4 | alimi 1455 | . . . . 5 ⊢ (∀𝑥 𝐵 ∈ 𝑊 → ∀𝑥{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V) |
6 | spsbc 2975 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V → [𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V)) | |
7 | 5, 6 | syl5 32 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 𝐵 ∈ 𝑊 → [𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V)) |
8 | 7 | imp 124 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 𝐵 ∈ 𝑊) → [𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V) |
9 | nfcv 2319 | . . . . 5 ⊢ Ⅎ𝑥V | |
10 | 9 | sbcabel 3045 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V ↔ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ V)) |
11 | 10 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V ↔ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ V)) |
12 | 8, 11 | mpbid 147 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 𝐵 ∈ 𝑊) → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ V) |
13 | 1, 12 | eqeltrid 2264 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 𝐵 ∈ 𝑊) → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 ∈ wcel 2148 {cab 2163 Vcvv 2738 [wsbc 2963 ⦋csb 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-sbc 2964 df-csb 3059 |
This theorem is referenced by: csbexa 4133 prdsex 12718 imasex 12726 |
Copyright terms: Public domain | W3C validator |