ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbexga GIF version

Theorem csbexga 4110
Description: The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbexga ((𝐴𝑉 ∧ ∀𝑥 𝐵𝑊) → 𝐴 / 𝑥𝐵 ∈ V)

Proof of Theorem csbexga
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3046 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 abid2 2287 . . . . . . 7 {𝑦𝑦𝐵} = 𝐵
3 elex 2737 . . . . . . 7 (𝐵𝑊𝐵 ∈ V)
42, 3eqeltrid 2253 . . . . . 6 (𝐵𝑊 → {𝑦𝑦𝐵} ∈ V)
54alimi 1443 . . . . 5 (∀𝑥 𝐵𝑊 → ∀𝑥{𝑦𝑦𝐵} ∈ V)
6 spsbc 2962 . . . . 5 (𝐴𝑉 → (∀𝑥{𝑦𝑦𝐵} ∈ V → [𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V))
75, 6syl5 32 . . . 4 (𝐴𝑉 → (∀𝑥 𝐵𝑊[𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V))
87imp 123 . . 3 ((𝐴𝑉 ∧ ∀𝑥 𝐵𝑊) → [𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V)
9 nfcv 2308 . . . . 5 𝑥V
109sbcabel 3032 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ V))
1110adantr 274 . . 3 ((𝐴𝑉 ∧ ∀𝑥 𝐵𝑊) → ([𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ V))
128, 11mpbid 146 . 2 ((𝐴𝑉 ∧ ∀𝑥 𝐵𝑊) → {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ V)
131, 12eqeltrid 2253 1 ((𝐴𝑉 ∧ ∀𝑥 𝐵𝑊) → 𝐴 / 𝑥𝐵 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341  wcel 2136  {cab 2151  Vcvv 2726  [wsbc 2951  csb 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952  df-csb 3046
This theorem is referenced by:  csbexa  4111
  Copyright terms: Public domain W3C validator