ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbexga GIF version

Theorem csbexga 4132
Description: The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbexga ((𝐴𝑉 ∧ ∀𝑥 𝐵𝑊) → 𝐴 / 𝑥𝐵 ∈ V)

Proof of Theorem csbexga
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3059 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 abid2 2298 . . . . . . 7 {𝑦𝑦𝐵} = 𝐵
3 elex 2749 . . . . . . 7 (𝐵𝑊𝐵 ∈ V)
42, 3eqeltrid 2264 . . . . . 6 (𝐵𝑊 → {𝑦𝑦𝐵} ∈ V)
54alimi 1455 . . . . 5 (∀𝑥 𝐵𝑊 → ∀𝑥{𝑦𝑦𝐵} ∈ V)
6 spsbc 2975 . . . . 5 (𝐴𝑉 → (∀𝑥{𝑦𝑦𝐵} ∈ V → [𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V))
75, 6syl5 32 . . . 4 (𝐴𝑉 → (∀𝑥 𝐵𝑊[𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V))
87imp 124 . . 3 ((𝐴𝑉 ∧ ∀𝑥 𝐵𝑊) → [𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V)
9 nfcv 2319 . . . . 5 𝑥V
109sbcabel 3045 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ V))
1110adantr 276 . . 3 ((𝐴𝑉 ∧ ∀𝑥 𝐵𝑊) → ([𝐴 / 𝑥]{𝑦𝑦𝐵} ∈ V ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ V))
128, 11mpbid 147 . 2 ((𝐴𝑉 ∧ ∀𝑥 𝐵𝑊) → {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ V)
131, 12eqeltrid 2264 1 ((𝐴𝑉 ∧ ∀𝑥 𝐵𝑊) → 𝐴 / 𝑥𝐵 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1351  wcel 2148  {cab 2163  Vcvv 2738  [wsbc 2963  csb 3058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-sbc 2964  df-csb 3059
This theorem is referenced by:  csbexa  4133  prdsex  12718  imasex  12726
  Copyright terms: Public domain W3C validator