Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbexga | GIF version |
Description: The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbexga | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 𝐵 ∈ 𝑊) → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3046 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
2 | abid2 2287 | . . . . . . 7 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐵} = 𝐵 | |
3 | elex 2737 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
4 | 2, 3 | eqeltrid 2253 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → {𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V) |
5 | 4 | alimi 1443 | . . . . 5 ⊢ (∀𝑥 𝐵 ∈ 𝑊 → ∀𝑥{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V) |
6 | spsbc 2962 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V → [𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V)) | |
7 | 5, 6 | syl5 32 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 𝐵 ∈ 𝑊 → [𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V)) |
8 | 7 | imp 123 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 𝐵 ∈ 𝑊) → [𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V) |
9 | nfcv 2308 | . . . . 5 ⊢ Ⅎ𝑥V | |
10 | 9 | sbcabel 3032 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V ↔ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ V)) |
11 | 10 | adantr 274 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V ↔ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ V)) |
12 | 8, 11 | mpbid 146 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 𝐵 ∈ 𝑊) → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ V) |
13 | 1, 12 | eqeltrid 2253 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 𝐵 ∈ 𝑊) → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1341 ∈ wcel 2136 {cab 2151 Vcvv 2726 [wsbc 2951 ⦋csb 3045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 df-csb 3046 |
This theorem is referenced by: csbexa 4111 |
Copyright terms: Public domain | W3C validator |