ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmpo GIF version

Theorem dfmpo 6276
Description: Alternate definition for the maps-to notation df-mpo 5923 (although it requires that 𝐶 be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfmpo.1 𝐶 ∈ V
Assertion
Ref Expression
dfmpo (𝑥𝐴, 𝑦𝐵𝐶) = 𝑥𝐴 𝑦𝐵 {⟨⟨𝑥, 𝑦⟩, 𝐶⟩}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem dfmpo
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mpompts 6251 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑤 ∈ (𝐴 × 𝐵) ↦ (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶)
2 vex 2763 . . . . 5 𝑤 ∈ V
3 1stexg 6220 . . . . 5 (𝑤 ∈ V → (1st𝑤) ∈ V)
42, 3ax-mp 5 . . . 4 (1st𝑤) ∈ V
5 2ndexg 6221 . . . . . 6 (𝑤 ∈ V → (2nd𝑤) ∈ V)
62, 5ax-mp 5 . . . . 5 (2nd𝑤) ∈ V
7 dfmpo.1 . . . . 5 𝐶 ∈ V
86, 7csbexa 4158 . . . 4 (2nd𝑤) / 𝑦𝐶 ∈ V
94, 8csbexa 4158 . . 3 (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶 ∈ V
109dfmpt 5735 . 2 (𝑤 ∈ (𝐴 × 𝐵) ↦ (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶) = 𝑤 ∈ (𝐴 × 𝐵){⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩}
11 nfcv 2336 . . . . 5 𝑥𝑤
12 nfcsb1v 3113 . . . . 5 𝑥(1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶
1311, 12nfop 3820 . . . 4 𝑥𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶
1413nfsn 3678 . . 3 𝑥{⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩}
15 nfcv 2336 . . . . 5 𝑦𝑤
16 nfcv 2336 . . . . . 6 𝑦(1st𝑤)
17 nfcsb1v 3113 . . . . . 6 𝑦(2nd𝑤) / 𝑦𝐶
1816, 17nfcsb 3118 . . . . 5 𝑦(1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶
1915, 18nfop 3820 . . . 4 𝑦𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶
2019nfsn 3678 . . 3 𝑦{⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩}
21 nfcv 2336 . . 3 𝑤{⟨⟨𝑥, 𝑦⟩, 𝐶⟩}
22 id 19 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → 𝑤 = ⟨𝑥, 𝑦⟩)
23 csbopeq1a 6241 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶 = 𝐶)
2422, 23opeq12d 3812 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → ⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩ = ⟨⟨𝑥, 𝑦⟩, 𝐶⟩)
2524sneqd 3631 . . 3 (𝑤 = ⟨𝑥, 𝑦⟩ → {⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩} = {⟨⟨𝑥, 𝑦⟩, 𝐶⟩})
2614, 20, 21, 25iunxpf 4810 . 2 𝑤 ∈ (𝐴 × 𝐵){⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩} = 𝑥𝐴 𝑦𝐵 {⟨⟨𝑥, 𝑦⟩, 𝐶⟩}
271, 10, 263eqtri 2218 1 (𝑥𝐴, 𝑦𝐵𝐶) = 𝑥𝐴 𝑦𝐵 {⟨⟨𝑥, 𝑦⟩, 𝐶⟩}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  Vcvv 2760  csb 3080  {csn 3618  cop 3621   ciun 3912  cmpt 4090   × cxp 4657  cfv 5254  cmpo 5920  1st c1st 6191  2nd c2nd 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator