Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfmpo | GIF version |
Description: Alternate definition for the maps-to notation df-mpo 5856 (although it requires that 𝐶 be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfmpo.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
dfmpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {〈〈𝑥, 𝑦〉, 𝐶〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpompts 6175 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑤 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶) | |
2 | vex 2733 | . . . . 5 ⊢ 𝑤 ∈ V | |
3 | 1stexg 6144 | . . . . 5 ⊢ (𝑤 ∈ V → (1st ‘𝑤) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (1st ‘𝑤) ∈ V |
5 | 2ndexg 6145 | . . . . . 6 ⊢ (𝑤 ∈ V → (2nd ‘𝑤) ∈ V) | |
6 | 2, 5 | ax-mp 5 | . . . . 5 ⊢ (2nd ‘𝑤) ∈ V |
7 | dfmpo.1 | . . . . 5 ⊢ 𝐶 ∈ V | |
8 | 6, 7 | csbexa 4116 | . . . 4 ⊢ ⦋(2nd ‘𝑤) / 𝑦⦌𝐶 ∈ V |
9 | 4, 8 | csbexa 4116 | . . 3 ⊢ ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 ∈ V |
10 | 9 | dfmpt 5671 | . 2 ⊢ (𝑤 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶) = ∪ 𝑤 ∈ (𝐴 × 𝐵){〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} |
11 | nfcv 2312 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
12 | nfcsb1v 3082 | . . . . 5 ⊢ Ⅎ𝑥⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 | |
13 | 11, 12 | nfop 3779 | . . . 4 ⊢ Ⅎ𝑥〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉 |
14 | 13 | nfsn 3641 | . . 3 ⊢ Ⅎ𝑥{〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} |
15 | nfcv 2312 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
16 | nfcv 2312 | . . . . . 6 ⊢ Ⅎ𝑦(1st ‘𝑤) | |
17 | nfcsb1v 3082 | . . . . . 6 ⊢ Ⅎ𝑦⦋(2nd ‘𝑤) / 𝑦⦌𝐶 | |
18 | 16, 17 | nfcsb 3086 | . . . . 5 ⊢ Ⅎ𝑦⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 |
19 | 15, 18 | nfop 3779 | . . . 4 ⊢ Ⅎ𝑦〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉 |
20 | 19 | nfsn 3641 | . . 3 ⊢ Ⅎ𝑦{〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} |
21 | nfcv 2312 | . . 3 ⊢ Ⅎ𝑤{〈〈𝑥, 𝑦〉, 𝐶〉} | |
22 | id 19 | . . . . 5 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → 𝑤 = 〈𝑥, 𝑦〉) | |
23 | csbopeq1a 6165 | . . . . 5 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 = 𝐶) | |
24 | 22, 23 | opeq12d 3771 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → 〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉 = 〈〈𝑥, 𝑦〉, 𝐶〉) |
25 | 24 | sneqd 3594 | . . 3 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → {〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} = {〈〈𝑥, 𝑦〉, 𝐶〉}) |
26 | 14, 20, 21, 25 | iunxpf 4757 | . 2 ⊢ ∪ 𝑤 ∈ (𝐴 × 𝐵){〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {〈〈𝑥, 𝑦〉, 𝐶〉} |
27 | 1, 10, 26 | 3eqtri 2195 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {〈〈𝑥, 𝑦〉, 𝐶〉} |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 Vcvv 2730 ⦋csb 3049 {csn 3581 〈cop 3584 ∪ ciun 3871 ↦ cmpt 4048 × cxp 4607 ‘cfv 5196 ∈ cmpo 5853 1st c1st 6115 2nd c2nd 6116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |