![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfmpo | GIF version |
Description: Alternate definition for the maps-to notation df-mpo 5882 (although it requires that 𝐶 be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfmpo.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
dfmpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {⟨⟨𝑥, 𝑦⟩, 𝐶⟩} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpompts 6201 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑤 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶) | |
2 | vex 2742 | . . . . 5 ⊢ 𝑤 ∈ V | |
3 | 1stexg 6170 | . . . . 5 ⊢ (𝑤 ∈ V → (1st ‘𝑤) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (1st ‘𝑤) ∈ V |
5 | 2ndexg 6171 | . . . . . 6 ⊢ (𝑤 ∈ V → (2nd ‘𝑤) ∈ V) | |
6 | 2, 5 | ax-mp 5 | . . . . 5 ⊢ (2nd ‘𝑤) ∈ V |
7 | dfmpo.1 | . . . . 5 ⊢ 𝐶 ∈ V | |
8 | 6, 7 | csbexa 4134 | . . . 4 ⊢ ⦋(2nd ‘𝑤) / 𝑦⦌𝐶 ∈ V |
9 | 4, 8 | csbexa 4134 | . . 3 ⊢ ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 ∈ V |
10 | 9 | dfmpt 5695 | . 2 ⊢ (𝑤 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶) = ∪ 𝑤 ∈ (𝐴 × 𝐵){⟨𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶⟩} |
11 | nfcv 2319 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
12 | nfcsb1v 3092 | . . . . 5 ⊢ Ⅎ𝑥⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 | |
13 | 11, 12 | nfop 3796 | . . . 4 ⊢ Ⅎ𝑥⟨𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶⟩ |
14 | 13 | nfsn 3654 | . . 3 ⊢ Ⅎ𝑥{⟨𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶⟩} |
15 | nfcv 2319 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
16 | nfcv 2319 | . . . . . 6 ⊢ Ⅎ𝑦(1st ‘𝑤) | |
17 | nfcsb1v 3092 | . . . . . 6 ⊢ Ⅎ𝑦⦋(2nd ‘𝑤) / 𝑦⦌𝐶 | |
18 | 16, 17 | nfcsb 3096 | . . . . 5 ⊢ Ⅎ𝑦⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 |
19 | 15, 18 | nfop 3796 | . . . 4 ⊢ Ⅎ𝑦⟨𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶⟩ |
20 | 19 | nfsn 3654 | . . 3 ⊢ Ⅎ𝑦{⟨𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶⟩} |
21 | nfcv 2319 | . . 3 ⊢ Ⅎ𝑤{⟨⟨𝑥, 𝑦⟩, 𝐶⟩} | |
22 | id 19 | . . . . 5 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → 𝑤 = ⟨𝑥, 𝑦⟩) | |
23 | csbopeq1a 6191 | . . . . 5 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 = 𝐶) | |
24 | 22, 23 | opeq12d 3788 | . . . 4 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → ⟨𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶⟩ = ⟨⟨𝑥, 𝑦⟩, 𝐶⟩) |
25 | 24 | sneqd 3607 | . . 3 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → {⟨𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶⟩} = {⟨⟨𝑥, 𝑦⟩, 𝐶⟩}) |
26 | 14, 20, 21, 25 | iunxpf 4777 | . 2 ⊢ ∪ 𝑤 ∈ (𝐴 × 𝐵){⟨𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶⟩} = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {⟨⟨𝑥, 𝑦⟩, 𝐶⟩} |
27 | 1, 10, 26 | 3eqtri 2202 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {⟨⟨𝑥, 𝑦⟩, 𝐶⟩} |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 Vcvv 2739 ⦋csb 3059 {csn 3594 ⟨cop 3597 ∪ ciun 3888 ↦ cmpt 4066 × cxp 4626 ‘cfv 5218 ∈ cmpo 5879 1st c1st 6141 2nd c2nd 6142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |