| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dfmpo | GIF version | ||
| Description: Alternate definition for the maps-to notation df-mpo 5927 (although it requires that 𝐶 be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| dfmpo.1 | ⊢ 𝐶 ∈ V | 
| Ref | Expression | 
|---|---|
| dfmpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {〈〈𝑥, 𝑦〉, 𝐶〉} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpompts 6256 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑤 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶) | |
| 2 | vex 2766 | . . . . 5 ⊢ 𝑤 ∈ V | |
| 3 | 1stexg 6225 | . . . . 5 ⊢ (𝑤 ∈ V → (1st ‘𝑤) ∈ V) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (1st ‘𝑤) ∈ V | 
| 5 | 2ndexg 6226 | . . . . . 6 ⊢ (𝑤 ∈ V → (2nd ‘𝑤) ∈ V) | |
| 6 | 2, 5 | ax-mp 5 | . . . . 5 ⊢ (2nd ‘𝑤) ∈ V | 
| 7 | dfmpo.1 | . . . . 5 ⊢ 𝐶 ∈ V | |
| 8 | 6, 7 | csbexa 4162 | . . . 4 ⊢ ⦋(2nd ‘𝑤) / 𝑦⦌𝐶 ∈ V | 
| 9 | 4, 8 | csbexa 4162 | . . 3 ⊢ ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 ∈ V | 
| 10 | 9 | dfmpt 5739 | . 2 ⊢ (𝑤 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶) = ∪ 𝑤 ∈ (𝐴 × 𝐵){〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} | 
| 11 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
| 12 | nfcsb1v 3117 | . . . . 5 ⊢ Ⅎ𝑥⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 | |
| 13 | 11, 12 | nfop 3824 | . . . 4 ⊢ Ⅎ𝑥〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉 | 
| 14 | 13 | nfsn 3682 | . . 3 ⊢ Ⅎ𝑥{〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} | 
| 15 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
| 16 | nfcv 2339 | . . . . . 6 ⊢ Ⅎ𝑦(1st ‘𝑤) | |
| 17 | nfcsb1v 3117 | . . . . . 6 ⊢ Ⅎ𝑦⦋(2nd ‘𝑤) / 𝑦⦌𝐶 | |
| 18 | 16, 17 | nfcsb 3122 | . . . . 5 ⊢ Ⅎ𝑦⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 | 
| 19 | 15, 18 | nfop 3824 | . . . 4 ⊢ Ⅎ𝑦〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉 | 
| 20 | 19 | nfsn 3682 | . . 3 ⊢ Ⅎ𝑦{〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} | 
| 21 | nfcv 2339 | . . 3 ⊢ Ⅎ𝑤{〈〈𝑥, 𝑦〉, 𝐶〉} | |
| 22 | id 19 | . . . . 5 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → 𝑤 = 〈𝑥, 𝑦〉) | |
| 23 | csbopeq1a 6246 | . . . . 5 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 = 𝐶) | |
| 24 | 22, 23 | opeq12d 3816 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → 〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉 = 〈〈𝑥, 𝑦〉, 𝐶〉) | 
| 25 | 24 | sneqd 3635 | . . 3 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → {〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} = {〈〈𝑥, 𝑦〉, 𝐶〉}) | 
| 26 | 14, 20, 21, 25 | iunxpf 4814 | . 2 ⊢ ∪ 𝑤 ∈ (𝐴 × 𝐵){〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {〈〈𝑥, 𝑦〉, 𝐶〉} | 
| 27 | 1, 10, 26 | 3eqtri 2221 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {〈〈𝑥, 𝑦〉, 𝐶〉} | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 Vcvv 2763 ⦋csb 3084 {csn 3622 〈cop 3625 ∪ ciun 3916 ↦ cmpt 4094 × cxp 4661 ‘cfv 5258 ∈ cmpo 5924 1st c1st 6196 2nd c2nd 6197 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |