| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfmpo | GIF version | ||
| Description: Alternate definition for the maps-to notation df-mpo 6005 (although it requires that 𝐶 be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| dfmpo.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| dfmpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {〈〈𝑥, 𝑦〉, 𝐶〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpompts 6342 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑤 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶) | |
| 2 | vex 2802 | . . . . 5 ⊢ 𝑤 ∈ V | |
| 3 | 1stexg 6311 | . . . . 5 ⊢ (𝑤 ∈ V → (1st ‘𝑤) ∈ V) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (1st ‘𝑤) ∈ V |
| 5 | 2ndexg 6312 | . . . . . 6 ⊢ (𝑤 ∈ V → (2nd ‘𝑤) ∈ V) | |
| 6 | 2, 5 | ax-mp 5 | . . . . 5 ⊢ (2nd ‘𝑤) ∈ V |
| 7 | dfmpo.1 | . . . . 5 ⊢ 𝐶 ∈ V | |
| 8 | 6, 7 | csbexa 4212 | . . . 4 ⊢ ⦋(2nd ‘𝑤) / 𝑦⦌𝐶 ∈ V |
| 9 | 4, 8 | csbexa 4212 | . . 3 ⊢ ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 ∈ V |
| 10 | 9 | dfmpt 5811 | . 2 ⊢ (𝑤 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶) = ∪ 𝑤 ∈ (𝐴 × 𝐵){〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} |
| 11 | nfcv 2372 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
| 12 | nfcsb1v 3157 | . . . . 5 ⊢ Ⅎ𝑥⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 | |
| 13 | 11, 12 | nfop 3872 | . . . 4 ⊢ Ⅎ𝑥〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉 |
| 14 | 13 | nfsn 3726 | . . 3 ⊢ Ⅎ𝑥{〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} |
| 15 | nfcv 2372 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
| 16 | nfcv 2372 | . . . . . 6 ⊢ Ⅎ𝑦(1st ‘𝑤) | |
| 17 | nfcsb1v 3157 | . . . . . 6 ⊢ Ⅎ𝑦⦋(2nd ‘𝑤) / 𝑦⦌𝐶 | |
| 18 | 16, 17 | nfcsb 3162 | . . . . 5 ⊢ Ⅎ𝑦⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 |
| 19 | 15, 18 | nfop 3872 | . . . 4 ⊢ Ⅎ𝑦〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉 |
| 20 | 19 | nfsn 3726 | . . 3 ⊢ Ⅎ𝑦{〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} |
| 21 | nfcv 2372 | . . 3 ⊢ Ⅎ𝑤{〈〈𝑥, 𝑦〉, 𝐶〉} | |
| 22 | id 19 | . . . . 5 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → 𝑤 = 〈𝑥, 𝑦〉) | |
| 23 | csbopeq1a 6332 | . . . . 5 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 = 𝐶) | |
| 24 | 22, 23 | opeq12d 3864 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → 〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉 = 〈〈𝑥, 𝑦〉, 𝐶〉) |
| 25 | 24 | sneqd 3679 | . . 3 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → {〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} = {〈〈𝑥, 𝑦〉, 𝐶〉}) |
| 26 | 14, 20, 21, 25 | iunxpf 4869 | . 2 ⊢ ∪ 𝑤 ∈ (𝐴 × 𝐵){〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {〈〈𝑥, 𝑦〉, 𝐶〉} |
| 27 | 1, 10, 26 | 3eqtri 2254 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {〈〈𝑥, 𝑦〉, 𝐶〉} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 Vcvv 2799 ⦋csb 3124 {csn 3666 〈cop 3669 ∪ ciun 3964 ↦ cmpt 4144 × cxp 4716 ‘cfv 5317 ∈ cmpo 6002 1st c1st 6282 2nd c2nd 6283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |