ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmpo GIF version

Theorem dfmpo 6128
Description: Alternate definition for the maps-to notation df-mpo 5787 (although it requires that 𝐶 be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfmpo.1 𝐶 ∈ V
Assertion
Ref Expression
dfmpo (𝑥𝐴, 𝑦𝐵𝐶) = 𝑥𝐴 𝑦𝐵 {⟨⟨𝑥, 𝑦⟩, 𝐶⟩}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem dfmpo
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mpompts 6104 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑤 ∈ (𝐴 × 𝐵) ↦ (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶)
2 vex 2692 . . . . 5 𝑤 ∈ V
3 1stexg 6073 . . . . 5 (𝑤 ∈ V → (1st𝑤) ∈ V)
42, 3ax-mp 5 . . . 4 (1st𝑤) ∈ V
5 2ndexg 6074 . . . . . 6 (𝑤 ∈ V → (2nd𝑤) ∈ V)
62, 5ax-mp 5 . . . . 5 (2nd𝑤) ∈ V
7 dfmpo.1 . . . . 5 𝐶 ∈ V
86, 7csbexa 4065 . . . 4 (2nd𝑤) / 𝑦𝐶 ∈ V
94, 8csbexa 4065 . . 3 (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶 ∈ V
109dfmpt 5605 . 2 (𝑤 ∈ (𝐴 × 𝐵) ↦ (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶) = 𝑤 ∈ (𝐴 × 𝐵){⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩}
11 nfcv 2282 . . . . 5 𝑥𝑤
12 nfcsb1v 3040 . . . . 5 𝑥(1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶
1311, 12nfop 3729 . . . 4 𝑥𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶
1413nfsn 3591 . . 3 𝑥{⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩}
15 nfcv 2282 . . . . 5 𝑦𝑤
16 nfcv 2282 . . . . . 6 𝑦(1st𝑤)
17 nfcsb1v 3040 . . . . . 6 𝑦(2nd𝑤) / 𝑦𝐶
1816, 17nfcsb 3042 . . . . 5 𝑦(1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶
1915, 18nfop 3729 . . . 4 𝑦𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶
2019nfsn 3591 . . 3 𝑦{⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩}
21 nfcv 2282 . . 3 𝑤{⟨⟨𝑥, 𝑦⟩, 𝐶⟩}
22 id 19 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → 𝑤 = ⟨𝑥, 𝑦⟩)
23 csbopeq1a 6094 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶 = 𝐶)
2422, 23opeq12d 3721 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → ⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩ = ⟨⟨𝑥, 𝑦⟩, 𝐶⟩)
2524sneqd 3545 . . 3 (𝑤 = ⟨𝑥, 𝑦⟩ → {⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩} = {⟨⟨𝑥, 𝑦⟩, 𝐶⟩})
2614, 20, 21, 25iunxpf 4695 . 2 𝑤 ∈ (𝐴 × 𝐵){⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩} = 𝑥𝐴 𝑦𝐵 {⟨⟨𝑥, 𝑦⟩, 𝐶⟩}
271, 10, 263eqtri 2165 1 (𝑥𝐴, 𝑦𝐵𝐶) = 𝑥𝐴 𝑦𝐵 {⟨⟨𝑥, 𝑦⟩, 𝐶⟩}
Colors of variables: wff set class
Syntax hints:   = wceq 1332  wcel 1481  Vcvv 2689  csb 3007  {csn 3532  cop 3535   ciun 3821  cmpt 3997   × cxp 4545  cfv 5131  cmpo 5784  1st c1st 6044  2nd c2nd 6045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator