| Step | Hyp | Ref
| Expression |
| 1 | | issod.1 |
. 2
⊢ (𝜑 → 𝑅 Po 𝐴) |
| 2 | | issod.2 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
| 3 | 2 | 3adant3 1019 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑧 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
| 4 | | orc 713 |
. . . . . . . . . . . 12
⊢ (𝑥𝑅𝑦 → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑧)) |
| 5 | 4 | a1i 9 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑧 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑧))) |
| 6 | | simp3r 1028 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑧 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → 𝑥𝑅𝑧) |
| 7 | | breq1 4037 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝑥𝑅𝑧 ↔ 𝑦𝑅𝑧)) |
| 8 | 6, 7 | syl5ibcom 155 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑧 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → (𝑥 = 𝑦 → 𝑦𝑅𝑧)) |
| 9 | | olc 712 |
. . . . . . . . . . . 12
⊢ (𝑦𝑅𝑧 → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑧)) |
| 10 | 8, 9 | syl6 33 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑧 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → (𝑥 = 𝑦 → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑧))) |
| 11 | | simp1 999 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑧 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → 𝜑) |
| 12 | | simp2r 1026 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑧 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → 𝑦 ∈ 𝐴) |
| 13 | | simp2l 1025 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑧 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → 𝑥 ∈ 𝐴) |
| 14 | | simp3l 1027 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑧 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → 𝑧 ∈ 𝐴) |
| 15 | 12, 13, 14 | 3jca 1179 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑧 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) |
| 16 | | potr 4344 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 Po 𝐴 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑦𝑅𝑥 ∧ 𝑥𝑅𝑧) → 𝑦𝑅𝑧)) |
| 17 | 1, 16 | sylan 283 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑦𝑅𝑥 ∧ 𝑥𝑅𝑧) → 𝑦𝑅𝑧)) |
| 18 | 17 | expcomd 1452 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥𝑅𝑧 → (𝑦𝑅𝑥 → 𝑦𝑅𝑧))) |
| 19 | 18 | imp 124 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑥𝑅𝑧) → (𝑦𝑅𝑥 → 𝑦𝑅𝑧)) |
| 20 | 11, 15, 6, 19 | syl21anc 1248 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑧 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → (𝑦𝑅𝑥 → 𝑦𝑅𝑧)) |
| 21 | 20, 9 | syl6 33 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑧 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → (𝑦𝑅𝑥 → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑧))) |
| 22 | 5, 10, 21 | 3jaod 1315 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑧 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → ((𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑧))) |
| 23 | 3, 22 | mpd 13 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑧 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑧)) |
| 24 | 23 | 3expa 1205 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝑧 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑧)) |
| 25 | 24 | expr 375 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑧 → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑧))) |
| 26 | 25 | ralrimiva 2570 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑧 → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑧))) |
| 27 | 26 | anassrs 400 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑧 → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑧))) |
| 28 | 27 | ralrimiva 2570 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑧 → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑧))) |
| 29 | | ralcom 2660 |
. . . 4
⊢
(∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑧 → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑧)) ↔ ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑧 → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑧))) |
| 30 | 28, 29 | sylib 122 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑧 → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑧))) |
| 31 | 30 | ralrimiva 2570 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑧 → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑧))) |
| 32 | | df-iso 4333 |
. 2
⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑧 → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑧)))) |
| 33 | 1, 31, 32 | sylanbrc 417 |
1
⊢ (𝜑 → 𝑅 Or 𝐴) |