ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issod GIF version

Theorem issod 4304
Description: An irreflexive, transitive, trichotomous relation is a linear ordering (in the sense of df-iso 4282). (Contributed by NM, 21-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
issod.1 (𝜑𝑅 Po 𝐴)
issod.2 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
Assertion
Ref Expression
issod (𝜑𝑅 Or 𝐴)
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝐴,𝑦   𝜑,𝑥,𝑦

Proof of Theorem issod
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 issod.1 . 2 (𝜑𝑅 Po 𝐴)
2 issod.2 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
323adant3 1012 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐴) ∧ (𝑧𝐴𝑥𝑅𝑧)) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
4 orc 707 . . . . . . . . . . . 12 (𝑥𝑅𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑧))
54a1i 9 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑦𝐴) ∧ (𝑧𝐴𝑥𝑅𝑧)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑧)))
6 simp3r 1021 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑦𝐴) ∧ (𝑧𝐴𝑥𝑅𝑧)) → 𝑥𝑅𝑧)
7 breq1 3992 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥𝑅𝑧𝑦𝑅𝑧))
86, 7syl5ibcom 154 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐴𝑦𝐴) ∧ (𝑧𝐴𝑥𝑅𝑧)) → (𝑥 = 𝑦𝑦𝑅𝑧))
9 olc 706 . . . . . . . . . . . 12 (𝑦𝑅𝑧 → (𝑥𝑅𝑦𝑦𝑅𝑧))
108, 9syl6 33 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑦𝐴) ∧ (𝑧𝐴𝑥𝑅𝑧)) → (𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑧)))
11 simp1 992 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑦𝐴) ∧ (𝑧𝐴𝑥𝑅𝑧)) → 𝜑)
12 simp2r 1019 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐴𝑦𝐴) ∧ (𝑧𝐴𝑥𝑅𝑧)) → 𝑦𝐴)
13 simp2l 1018 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐴𝑦𝐴) ∧ (𝑧𝐴𝑥𝑅𝑧)) → 𝑥𝐴)
14 simp3l 1020 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐴𝑦𝐴) ∧ (𝑧𝐴𝑥𝑅𝑧)) → 𝑧𝐴)
1512, 13, 143jca 1172 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑦𝐴) ∧ (𝑧𝐴𝑥𝑅𝑧)) → (𝑦𝐴𝑥𝐴𝑧𝐴))
16 potr 4293 . . . . . . . . . . . . . . . 16 ((𝑅 Po 𝐴 ∧ (𝑦𝐴𝑥𝐴𝑧𝐴)) → ((𝑦𝑅𝑥𝑥𝑅𝑧) → 𝑦𝑅𝑧))
171, 16sylan 281 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝐴𝑥𝐴𝑧𝐴)) → ((𝑦𝑅𝑥𝑥𝑅𝑧) → 𝑦𝑅𝑧))
1817expcomd 1434 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐴𝑥𝐴𝑧𝐴)) → (𝑥𝑅𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧)))
1918imp 123 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐴𝑥𝐴𝑧𝐴)) ∧ 𝑥𝑅𝑧) → (𝑦𝑅𝑥𝑦𝑅𝑧))
2011, 15, 6, 19syl21anc 1232 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐴𝑦𝐴) ∧ (𝑧𝐴𝑥𝑅𝑧)) → (𝑦𝑅𝑥𝑦𝑅𝑧))
2120, 9syl6 33 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑦𝐴) ∧ (𝑧𝐴𝑥𝑅𝑧)) → (𝑦𝑅𝑥 → (𝑥𝑅𝑦𝑦𝑅𝑧)))
225, 10, 213jaod 1299 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐴) ∧ (𝑧𝐴𝑥𝑅𝑧)) → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → (𝑥𝑅𝑦𝑦𝑅𝑧)))
233, 22mpd 13 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑦𝐴) ∧ (𝑧𝐴𝑥𝑅𝑧)) → (𝑥𝑅𝑦𝑦𝑅𝑧))
24233expa 1198 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝑧𝐴𝑥𝑅𝑧)) → (𝑥𝑅𝑦𝑦𝑅𝑧))
2524expr 373 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → (𝑥𝑅𝑧 → (𝑥𝑅𝑦𝑦𝑅𝑧)))
2625ralrimiva 2543 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑧𝐴 (𝑥𝑅𝑧 → (𝑥𝑅𝑦𝑦𝑅𝑧)))
2726anassrs 398 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → ∀𝑧𝐴 (𝑥𝑅𝑧 → (𝑥𝑅𝑦𝑦𝑅𝑧)))
2827ralrimiva 2543 . . . 4 ((𝜑𝑥𝐴) → ∀𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧 → (𝑥𝑅𝑦𝑦𝑅𝑧)))
29 ralcom 2633 . . . 4 (∀𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧 → (𝑥𝑅𝑦𝑦𝑅𝑧)) ↔ ∀𝑧𝐴𝑦𝐴 (𝑥𝑅𝑧 → (𝑥𝑅𝑦𝑦𝑅𝑧)))
3028, 29sylib 121 . . 3 ((𝜑𝑥𝐴) → ∀𝑧𝐴𝑦𝐴 (𝑥𝑅𝑧 → (𝑥𝑅𝑦𝑦𝑅𝑧)))
3130ralrimiva 2543 . 2 (𝜑 → ∀𝑥𝐴𝑧𝐴𝑦𝐴 (𝑥𝑅𝑧 → (𝑥𝑅𝑦𝑦𝑅𝑧)))
32 df-iso 4282 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑧𝐴𝑦𝐴 (𝑥𝑅𝑧 → (𝑥𝑅𝑦𝑦𝑅𝑧))))
331, 31, 32sylanbrc 415 1 (𝜑𝑅 Or 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 703  w3o 972  w3a 973  wcel 2141  wral 2448   class class class wbr 3989   Po wpo 4279   Or wor 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-po 4281  df-iso 4282
This theorem is referenced by:  ltsopi  7282  ltsonq  7360
  Copyright terms: Public domain W3C validator